Difference between revisions of "009A Sample Final 1, Problem 2"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
| Line 67: | Line 67: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
| − | | | + | |We need to use the limit definition of derivative and calculate the limit from both sides. So, we have |
| − | |||
| − | |||
|- | |- | ||
| | | | ||
| + | ::<math>\begin{array}{rcl} | ||
| + | \displaystyle{\lim_{h\rightarrow 0^-}\frac{f(3+h)-f(3)}{h}} & = & \displaystyle{\lim_{h\rightarrow 0}\frac{(3+h)+5-8}{h}}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{\lim_{h\rightarrow 0}\frac{h}{h}}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{\lim_{h\rightarrow 0}1}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{1} | ||
| + | \end{array}</math> | ||
|} | |} | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Step 2: | !Step 2: | ||
| + | |- | ||
| + | |Now, we have | ||
|- | |- | ||
| | | | ||
| + | ::<math>\begin{array}{rcl} | ||
| + | \displaystyle{\lim_{h\rightarrow 0^+}\frac{f(3+h)-f(3)}{h}} & = & \displaystyle{\lim_{h\rightarrow 0}\frac{4\sqrt{3+h+1}-8}{h}}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{\lim_{h\rightarrow 0}\frac{4(\sqrt{4+h}-\sqrt{4})}{h}}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{\lim_{h\rightarrow 0}\frac{4(\sqrt{4+h}-\sqrt{4})(\sqrt{4+h}+\sqrt{4})}{h(\sqrt{4+h}+\sqrt{4})}}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{\lim_{h\rightarrow 0}\frac{4(4+h-4)}{h(\sqrt{4+h}+\sqrt{4})}}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{\lim_{h\rightarrow 0}\frac{4h}{h(\sqrt{4+h}+\sqrt{4})}}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{\lim_{h\rightarrow 0}\frac{4}{(\sqrt{4+h}+\sqrt{4})}}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{\frac{4}{2\sqrt{4}}}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{1}\\ | ||
| + | \end{array}</math> | ||
|} | |} | ||
| Line 83: | Line 109: | ||
!Step 3: | !Step 3: | ||
|- | |- | ||
| − | | | + | |Since <math>\lim_{h\rightarrow 0^-}\frac{f(3+h)-f(3)}{h}=\lim_{h\rightarrow 0^+}\frac{f(3+h)-f(3)}{h}</math>, |
|- | |- | ||
| − | | | + | |<math>f(x)</math> is differentiable at <math>x=3</math>. |
|} | |} | ||
| Line 93: | Line 119: | ||
|'''(a)''' Since <math>\lim_{x\rightarrow 3^+}f(x)=\lim_{x\rightarrow 3^-}f(x)=f(3)</math>, <math>f(x)</math> is continuous. | |'''(a)''' Since <math>\lim_{x\rightarrow 3^+}f(x)=\lim_{x\rightarrow 3^-}f(x)=f(3)</math>, <math>f(x)</math> is continuous. | ||
|- | |- | ||
| − | |'''(b)''' | + | |'''(b)''' Since <math>\lim_{h\rightarrow 0^-}\frac{f(3+h)-f(3)}{h}=\lim_{h\rightarrow 0^+}\frac{f(3+h)-f(3)}{h}</math>, |
| + | |- | ||
| + | |<math>f(x)</math> is differentiable at <math>x=3</math>. | ||
|} | |} | ||
[[009A_Sample_Final_1|'''<u>Return to Sample Exam</u>''']] | [[009A_Sample_Final_1|'''<u>Return to Sample Exam</u>''']] | ||
Revision as of 11:24, 15 February 2016
Consider the following piecewise defined function:
a) Show that is continuous at .
b) Using the limit definition of the derivative, and computing the limits from both sides, show that is differentiable at .
| Foundations: |
|---|
Solution:
(a)
| Step 1: |
|---|
| We first calculate . We have |
|
|
| Step 2: |
|---|
| Now, we calculate . We have |
|
|
| Step 3: |
|---|
| Now, we calculate . We have |
| . |
| Since , is continuous. |
(b)
| Step 1: |
|---|
| We need to use the limit definition of derivative and calculate the limit from both sides. So, we have |
|
|
| Step 2: |
|---|
| Now, we have |
|
|
| Step 3: |
|---|
| Since , |
| is differentiable at . |
| Final Answer: |
|---|
| (a) Since , is continuous. |
| (b) Since , |
| is differentiable at . |