Difference between revisions of "009A Sample Final 1, Problem 1"

From Grad Wiki
Jump to navigation Jump to search
Line 1: Line 1:
 
<span class="exam">In each part, compute the limit. If the limit is infinite, be sure to specify positive or negative infinity.
 
<span class="exam">In each part, compute the limit. If the limit is infinite, be sure to specify positive or negative infinity.
  
<span class="exam">a) <math>\lim_{x\rightarrow -3} \frac{x^3-9x}{6+2x}</math>
+
<span class="exam">a) <math style="vertical-align: -14px">\lim_{x\rightarrow -3} \frac{x^3-9x}{6+2x}</math>
  
<span class="exam">b) <math>\lim_{x\rightarrow 0^+} \frac{\sin (2x)}{x^2}</math>
+
<span class="exam">b) <math style="vertical-align: -14px">\lim_{x\rightarrow 0^+} \frac{\sin (2x)}{x^2}</math>
  
<span class="exam">c) <math>\lim_{x\rightarrow -\infty} \frac{3x}{\sqrt{4x^2+x+5}}</math>
+
<span class="exam">c) <math style="vertical-align: -14px">\lim_{x\rightarrow -\infty} \frac{3x}{\sqrt{4x^2+x+5}}</math>
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"

Revision as of 14:34, 22 February 2016

In each part, compute the limit. If the limit is infinite, be sure to specify positive or negative infinity.

a)

b)

c)

Foundations:  
Review L'Hopital's Rule

Solution:

(a)

Step 1:  
We begin by factoring the numerator. We have
.
So, we can cancel in the numerator and denominator. Thus, we have
.
Step 2:  
Now, we can just plug in to get
.

(b)

Step 1:  
We proceed using L'Hopital's Rule. So, we have
Step 2:  
This limit is .

(c)

Step 1:  
We have
.
Since we are looking at the limit as goes to negative infinity, we have .
So, we have
.
Step 2:  
We simplify to get
So, we have
.
Final Answer:  
(a) .
(b)
(c)

Return to Sample Exam