Difference between revisions of "009A Sample Final 1, Problem 1"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 1: | Line 1: | ||
<span class="exam">In each part, compute the limit. If the limit is infinite, be sure to specify positive or negative infinity. | <span class="exam">In each part, compute the limit. If the limit is infinite, be sure to specify positive or negative infinity. | ||
− | <span class="exam">a) <math>\lim_{x\rightarrow -3} \frac{x^3-9x}{6+2x}</math> | + | <span class="exam">a) <math style="vertical-align: -14px">\lim_{x\rightarrow -3} \frac{x^3-9x}{6+2x}</math> |
− | <span class="exam">b) <math>\lim_{x\rightarrow 0^+} \frac{\sin (2x)}{x^2}</math> | + | <span class="exam">b) <math style="vertical-align: -14px">\lim_{x\rightarrow 0^+} \frac{\sin (2x)}{x^2}</math> |
− | <span class="exam">c) <math>\lim_{x\rightarrow -\infty} \frac{3x}{\sqrt{4x^2+x+5}}</math> | + | <span class="exam">c) <math style="vertical-align: -14px">\lim_{x\rightarrow -\infty} \frac{3x}{\sqrt{4x^2+x+5}}</math> |
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" |
Revision as of 14:34, 22 February 2016
In each part, compute the limit. If the limit is infinite, be sure to specify positive or negative infinity.
a)
b)
c)
Foundations: |
---|
Review L'Hopital's Rule |
Solution:
(a)
Step 1: |
---|
We begin by factoring the numerator. We have |
. |
So, we can cancel in the numerator and denominator. Thus, we have |
. |
Step 2: |
---|
Now, we can just plug in to get |
. |
(b)
Step 1: |
---|
We proceed using L'Hopital's Rule. So, we have |
|
Step 2: |
---|
This limit is . |
(c)
Step 1: |
---|
We have |
. |
Since we are looking at the limit as goes to negative infinity, we have . |
So, we have |
. |
Step 2: |
---|
We simplify to get |
So, we have |
. |
Final Answer: |
---|
(a) . |
(b) |
(c) |