Difference between revisions of "009A Sample Final 1, Problem 1"

From Grad Wiki
Jump to navigation Jump to search
Line 44: Line 44:
 
!Step 1:    
 
!Step 1:    
 
|-
 
|-
|
+
|We proceed using L'Hopital's Rule. So, we have
 
|-
 
|-
 
|
 
|
 +
::<math>\begin{array}{rcl}
 +
\displaystyle{\lim_{x\rightarrow 0^+} \frac{\sin (2x)}{x^2}} & = & \displaystyle{\lim_{x\rightarrow 0^+}\frac{2\cos(2x)}{2x}}\\
 +
&&\\
 +
& = & \displaystyle{\lim_{x\rightarrow 0^+}\frac{\cos(2x)}{x}}\\
 +
\end{array}</math>
 
|-
 
|-
 
|
 
|
Line 54: Line 59:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|
+
|This limit is <math>+\infty</math>.
|}
 
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 3: &nbsp;
 
|-
 
|
 
|-
 
|
 
 
|}
 
|}
  
Line 90: Line 87:
 
|'''(a)''' <math>9</math>.
 
|'''(a)''' <math>9</math>.
 
|-
 
|-
|'''(b)'''  
+
|'''(b)''' <math>+\infty</math>
 
|-
 
|-
 
|'''(c)'''  
 
|'''(c)'''  
 
|}
 
|}
 
[[009A_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]
 
[[009A_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]

Revision as of 18:21, 14 February 2016

In each part, compute the limit. If the limit is infinite, be sure to specify positive or negative infinity.

a)

b)

c)

Foundations:  
Review L'Hopital's Rule

Solution:

(a)

Step 1:  
We begin by factoring the numerator. We have
.
So, we can cancel in the numerator and denominator. Thus, we have
.
Step 2:  
Now, we can just plug in to get
.

(b)

Step 1:  
We proceed using L'Hopital's Rule. So, we have
Step 2:  
This limit is .

(c)

Step 1:  
Step 2:  
Final Answer:  
(a) .
(b)
(c)

Return to Sample Exam