Difference between revisions of "009A Sample Final 1, Problem 3"

From Grad Wiki
Jump to navigation Jump to search
Line 46: Line 46:
 
&&\\
 
&&\\
 
& = & \displaystyle{\frac{4x}{x^4-1}}\\
 
& = & \displaystyle{\frac{4x}{x^4-1}}\\
 
 
\end{array}</math>
 
\end{array}</math>
 
|}
 
|}
Line 55: Line 54:
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|
+
|Again, we need to use the Chain Rule. We have
 
|-
 
|-
|
+
|<math>g'(x)=8\cos(4x)+4\sec^2(\sqrt{1+x^3})\bigg(\frac{d}{dx}\sqrt{1+x^3}\bigg)</math>.
|-
 
|
 
 
|}
 
|}
  
Line 65: Line 62:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|
+
|We need to calculate <math>\frac{d}{dx}\sqrt{1+x^3}</math>.
|}
 
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 3: &nbsp;
 
 
|-
 
|-
|
+
|We use the Chain Rule again to get
 
|-
 
|-
|
+
|::<math>\begin{array}{rcl}
 +
\displaystyle{g'(x)} & = & \displaystyle{8\cos(4x)+4\sec^2(\sqrt{1+x^3})\bigg(\frac{d}{dx}\sqrt{1+x^3}\bigg)}\\
 +
&&\\
 +
& = & \displaystyle{8\cos(4x)+4\sec^2(\sqrt{1+x^3})\frac{1}{2}(1+x^3)^{-\frac{1}{2}}3x^2}\\
 +
&&\\
 +
& = & \displaystyle{8\cos(4x)+\frac{6\sec^2(\sqrt{1+x^3})x^2}{\sqrt{1+x^3}}}\\
 +
\end{array}</math>
 
|}
 
|}
  
Line 81: Line 80:
 
|'''(a)''' <math>f'(x)=\frac{4x}{x^4-1}</math>
 
|'''(a)''' <math>f'(x)=\frac{4x}{x^4-1}</math>
 
|-
 
|-
|'''(b)'''  
+
|'''(b)''' <math>g'(x)=8\cos(4x)+\frac{6\sec^2(\sqrt{1+x^3})x^2}{\sqrt{1+x^3}}</math>.
 
|}
 
|}
 
[[009A_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]
 
[[009A_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]

Revision as of 17:46, 14 February 2016

Find the derivatives of the following functions.

a)

b)

Foundations:  
Review chain rule, quotient rule, and derivatives of trig functions

Solution:

(a)

Step 1:  
Using the chain rule, we have
Step 2:  
Now, we need to calculate .
To do this, we use the Chain Rule. So, we have

(b)

Step 1:  
Again, we need to use the Chain Rule. We have
.
Step 2:  
We need to calculate .
We use the Chain Rule again to get
::
Final Answer:  
(a)
(b) .

Return to Sample Exam