Difference between revisions of "009C Sample Final 1, Problem 9"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 8: | Line 8: | ||
!Foundations: | !Foundations: | ||
|- | |- | ||
− | |The formula for the arc length <math>L</math> of a polar curve <math>r=f(\theta)</math> with <math>\alpha_1\leq \theta \leq \alpha_2</math> is | + | |The formula for the arc length <math style="vertical-align: 0px">L</math> of a polar curve <math style="vertical-align: -5px">r=f(\theta)</math> with <math style="vertical-align: -4px">\alpha_1\leq \theta \leq \alpha_2</math> is |
|- | |- | ||
− | |<math>L=\int_{\alpha_1}^{\alpha_2} \sqrt{r^2+\bigg(\frac{dr}{d\theta}\bigg)^2}d\theta</math>. | + | | |
+ | ::<math>L=\int_{\alpha_1}^{\alpha_2} \sqrt{r^2+\bigg(\frac{dr}{d\theta}\bigg)^2}d\theta</math>. | ||
|- | |- | ||
|Review trig substitution. | |Review trig substitution. | ||
Line 20: | Line 21: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
− | |First, we need to calculate <math>\frac{dr}{d\theta}</math>. Since <math>r=\theta,~\frac{dr}{d\theta}=1</math>. | + | |First, we need to calculate <math style="vertical-align: -14px">\frac{dr}{d\theta}</math>. Since <math style="vertical-align: -14px">r=\theta,~\frac{dr}{d\theta}=1</math>. |
|- | |- | ||
|Using the formula in Foundations, we have | |Using the formula in Foundations, we have | ||
|- | |- | ||
− | |<math>L=\int_0^{2\pi}\sqrt{\theta^2+1}d\theta</math>. | + | | |
+ | ::<math>L=\int_0^{2\pi}\sqrt{\theta^2+1}d\theta</math>. | ||
|} | |} | ||
Line 30: | Line 32: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
− | |Now, we proceed using trig substitution. Let <math>\theta=\tan x</math>. Then, <math>d\theta=\sec^2xdx</math>. | + | |Now, we proceed using trig substitution. Let <math style="vertical-align: -2px">\theta=\tan x</math>. Then, <math style="vertical-align: -1px">d\theta=\sec^2xdx</math>. |
|- | |- | ||
|So, the integral becomes | |So, the integral becomes | ||
Line 47: | Line 49: | ||
!Step 3: | !Step 3: | ||
|- | |- | ||
− | |Since <math>\theta=\tan x</math>, we have <math>x=\tan^{-1}\theta</math>. | + | |Since <math style="vertical-align: -1px">\theta=\tan x</math>, we have <math style="vertical-align: -1px">x=\tan^{-1}\theta</math>. |
|- | |- | ||
|So, we have | |So, we have | ||
Line 64: | Line 66: | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
− | |<math> | + | |<math>\frac{1}{2}\sec(\tan^{-1}(2\pi))2\pi+\frac{1}{2}\ln|\sec(\tan^{-1}(2\pi))+2\pi|</math> |
|} | |} | ||
[[009C_Sample_Final_1|'''<u>Return to Sample Exam</u>''']] | [[009C_Sample_Final_1|'''<u>Return to Sample Exam</u>''']] |
Revision as of 13:36, 22 February 2016
A curve is given in polar coordinates by
Find the length of the curve.
Foundations: |
---|
The formula for the arc length of a polar curve with is |
|
Review trig substitution. |
Solution:
Step 1: |
---|
First, we need to calculate . Since . |
Using the formula in Foundations, we have |
|
Step 2: |
---|
Now, we proceed using trig substitution. Let . Then, . |
So, the integral becomes |
|
Step 3: |
---|
Since , we have . |
So, we have |
|
Final Answer: |
---|