Difference between revisions of "009C Sample Final 1, Problem 7"

From Grad Wiki
Jump to navigation Jump to search
Line 34: Line 34:
 
|<math>y'=\frac{dy}{dx}=\frac{\frac{dr}{d\theta}\sin\theta+r\cos\theta}{\frac{dr}{d\theta}\cos\theta-r\sin\theta}</math>.
 
|<math>y'=\frac{dy}{dx}=\frac{\frac{dr}{d\theta}\sin\theta+r\cos\theta}{\frac{dr}{d\theta}\cos\theta-r\sin\theta}</math>.
 
|-
 
|-
|Since <math>r=1+\sin\theta</math>, <math>\frac{dr}{d\theta}=\cos\theta</math>.
+
|Since <math>r=1+\sin\theta</math>,  
 +
|-
 +
|<math>\frac{dr}{d\theta}=\cos\theta</math>.
 
|-
 
|-
 
|Hence, <math>y'=\frac{\cos\theta\sin\theta+(1+\sin\theta)\cos\theta}{\cos^2\theta-(1+\sin\theta)\sin\theta}</math>
 
|Hence, <math>y'=\frac{\cos\theta\sin\theta+(1+\sin\theta)\cos\theta}{\cos^2\theta-(1+\sin\theta)\sin\theta}</math>

Revision as of 13:10, 10 February 2016

A curve is given in polar coordinates by

a) Sketch the curve.

b) Compute .

c) Compute .

Foundations:  
Review derivatives in polar coordinates

Solution:

(a)

Step 1:  
Insert sketch of graph


(b)

Step 1:  
First, recall we have
.
Since ,
.
Hence,
Step 2:  
Thus, we have

(c)

Step 1:  
We have .
So, first we need to find .
We have
since and .
Step 2:  
Now, using the resulting formula for , we get
.
Final Answer:  
(a) See (a) above for the graph.
(b)
(c)

Return to Sample Exam