Difference between revisions of "009C Sample Final 1, Problem 2"

From Grad Wiki
Jump to navigation Jump to search
Line 33: Line 33:
 
!Step 2:  
 
!Step 2:  
 
|-
 
|-
|Since <math>2<e</math>, <math>\bigg|-\frac{2}{e}\bigg|<1</math>. So,  
+
|Since <math style="vertical-align: -16px">2<e,~\bigg|-\frac{2}{e}\bigg|<1</math>. So,  
 
|-
 
|-
|<math>\sum_{n=0}^{\infty} (-2)^ne^{-n}=\frac{1}{1+\frac{2}{e}}=\frac{1}{\frac{e+2}{e}}=\frac{e}{e+2}</math>.
+
|
 +
::<math>\sum_{n=0}^{\infty} (-2)^ne^{-n}=\frac{1}{1+\frac{2}{e}}=\frac{1}{\frac{e+2}{e}}=\frac{e}{e+2}</math>.
 
|}
 
|}
  
Line 45: Line 46:
 
|This is a telescoping series. First, we find the partial sum of this series.
 
|This is a telescoping series. First, we find the partial sum of this series.
 
|-
 
|-
|Let <math>s_k=\sum_{n=1}^k \bigg(\frac{1}{2^n}-\frac{1}{2^{n+1}}\bigg)</math>.
+
|Let <math style="vertical-align: -20px">s_k=\sum_{n=1}^k \bigg(\frac{1}{2^n}-\frac{1}{2^{n+1}}\bigg)</math>.
 
|-
 
|-
|Then, <math>s_k=\frac{1}{2}-\frac{1}{2^{k+1}}</math>.
+
|Then, <math style="vertical-align: -14px">s_k=\frac{1}{2}-\frac{1}{2^{k+1}}</math>.
 
|}
 
|}
  
Line 53: Line 54:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|Thus, <math>\sum_{n=1}^{\infty} \bigg(\frac{1}{2^n}-\frac{1}{2^{n+1}}\bigg)=\lim_{k\rightarrow \infty} s_k=\lim_{k\rightarrow \infty}\frac{1}{2}-\frac{1}{2^{k+1}}=\frac{1}{2}</math>
+
|Thus,  
 +
|-
 +
|
 +
::<math>\sum_{n=1}^{\infty} \bigg(\frac{1}{2^n}-\frac{1}{2^{n+1}}\bigg)=\lim_{k\rightarrow \infty} s_k=\lim_{k\rightarrow \infty}\frac{1}{2}-\frac{1}{2^{k+1}}=\frac{1}{2}</math>
 
|}
 
|}
  

Revision as of 14:23, 22 February 2016

Find the sum of the following series:

a)

b)

Foundations:  
Review geometric series.
Review telescoping series.

Solution:

(a)

Step 1:  
First, we write
Step 2:  
Since . So,
.

(b)

Step 1:  
This is a telescoping series. First, we find the partial sum of this series.
Let .
Then, .
Step 2:  
Thus,


Final Answer:  
(a)
(b)

Return to Sample Exam