Difference between revisions of "009B Sample Final 1, Problem 4"

From Grad Wiki
Jump to navigation Jump to search
Line 69: Line 69:
 
!Step 1:    
 
!Step 1:    
 
|-
 
|-
|First, we add and subtract <math>x</math> from the numerator. So, we have
+
|First, we add and subtract <math>x</math> from the numerator.  
 
|-
 
|-
|<math>\int \frac{2x^2+1}{2x^2+x}~dx=\int\frac{2x^2+x-x+1}{2x^2+x}~dx=\int \frac{2x^2+x}{2x^2+x}~dx+\int\frac{1-x}{2x^2+x}~dx=\int ~dx+\int\frac{1-x}{2x^2+x}~dx </math>.
+
|So, we have
 +
|-
 +
|
 +
::<math>\begin{array}{rcl}
 +
\displaystyle{\int \frac{2x^2+1}{2x^2+x}~dx} & = & \displaystyle{\int\frac{2x^2+x-x+1}{2x^2+x}~dx}\\
 +
&&\\
 +
& = & \displaystyle{\int \frac{2x^2+x}{2x^2+x}~dx+\int\frac{1-x}{2x^2+x}~dx}\\
 +
&&\\
 +
& = & \displaystyle{\int ~dx+\int\frac{1-x}{2x^2+x}~dx}\\
 +
\end{array}</math>
 
|}
 
|}
  
Line 81: Line 90:
 
|Since <math>2x^2+x=x(2x+1)</math>, we let <math>\frac{1-x}{2x^2+x}=\frac{A}{x}+\frac{B}{2x+1}</math>.
 
|Since <math>2x^2+x=x(2x+1)</math>, we let <math>\frac{1-x}{2x^2+x}=\frac{A}{x}+\frac{B}{2x+1}</math>.
 
|-
 
|-
|Multiplying both sides of the last equation by <math>x(2x+1)</math>, we get <math>1-x=A(2x+1)+Bx</math>.
+
|Multiplying both sides of the last equation by <math>x(2x+1)</math>,  
 +
|-
 +
|we get <math>1-x=A(2x+1)+Bx</math>.
 
|-
 
|-
 
|If we let <math>x=0</math>, the last equation becomes <math>1=A</math>.
 
|If we let <math>x=0</math>, the last equation becomes <math>1=A</math>.
Line 95: Line 106:
 
|If we plug in the last equation from Step 2 into our final integral in Step 1, we have  
 
|If we plug in the last equation from Step 2 into our final integral in Step 1, we have  
 
|-
 
|-
|<math>\int \frac{2x^2+1}{2x^2+x}~dx=\int ~dx+\int\frac{1}{x}~dx+\int\frac{-3}{2x+1}~dx=x+\ln x+ \int\frac{-3}{2x+1}~dx</math>.
+
|
 +
::<math>\begin{array}{rcl}
 +
\displaystyle{\int \frac{2x^2+1}{2x^2+x}~dx} & = & \displaystyle{\int ~dx+\int\frac{1}{x}~dx+\int\frac{-3}{2x+1}~dx}\\
 +
&&\\
 +
& = & \displaystyle{x+\ln x+ \int\frac{-3}{2x+1}~dx}\\
 +
\end{array}</math>
 
|}
 
|}
  
Line 107: Line 123:
 
|Thus, our final integral becomes
 
|Thus, our final integral becomes
 
|-
 
|-
|<math>\int \frac{2x^2+1}{2x^2+x}~dx=x+\ln x+ \int\frac{-3}{2x+1}~dx=x+\ln x+\int\frac{-3}{2u}~du=x+\ln x-\frac{3}{2}\ln u +C</math>.
+
|
 +
::<math>\begin{array}{rcl}
 +
\displaystyle{\int \frac{2x^2+1}{2x^2+x}~dx} & = & \displaystyle{x+\ln x+ \int\frac{-3}{2x+1}~dx}\\
 +
&&\\
 +
& = & \displaystyle{x+\ln x+\int\frac{-3}{2u}~du}\\
 +
&&\\
 +
& = & \displaystyle{x+\ln x-\frac{3}{2}\ln u +C}\\
 +
\end{array}</math>
 
|-
 
|-
 
|Therefore, the final answer is
 
|Therefore, the final answer is
Line 120: Line 143:
 
|First, we write <math style="vertical-align: -13px">\int\sin^3x~dx=\int \sin^2 x \sin x~dx</math>.
 
|First, we write <math style="vertical-align: -13px">\int\sin^3x~dx=\int \sin^2 x \sin x~dx</math>.
 
|-
 
|-
|Using the identity <math style="vertical-align: -2px">\sin^2x+\cos^2x=1</math>, we get <math style="vertical-align: -1px">\sin^2x=1-\cos^2x</math>. If we use this identity, we have
+
|Using the identity <math style="vertical-align: -2px">\sin^2x+\cos^2x=1</math>, we get <math style="vertical-align: -1px">\sin^2x=1-\cos^2x</math>.  
 +
|-
 +
|If we use this identity, we have
 
|-
 
|-
 
| &nbsp; &nbsp; <math style="vertical-align: -13px">\int\sin^3x~dx=\int (1-\cos^2x)\sin x~dx</math>.
 
| &nbsp; &nbsp; <math style="vertical-align: -13px">\int\sin^3x~dx=\int (1-\cos^2x)\sin x~dx</math>.
Line 130: Line 155:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|Now, we proceed by <math>u</math>-substitution. Let <math>u=\cos x</math>. Then, <math>du=-\sin x dx</math>. So we have
+
|Now, we proceed by <math>u</math>-substitution. Let <math>u=\cos x</math>. Then, <math>du=-\sin x dx</math>.  
 +
|-
 +
|So we have
 
|-
 
|-
|<math style="vertical-align: -13px">\int\sin^3x~dx=\int -(1-u^2)~du=-u+\frac{u^3}{3}+C=-\cos x+\frac{\cos^3x}{3}+C</math>.
+
|
 +
::<math>\begin{array}{rcl}
 +
\displaystyle{\int\sin^3x~dx} & = & \displaystyle{\int -(1-u^2)~du}\\
 +
&&\\
 +
& = & \displaystyle{-u+\frac{u^3}{3}+C}\\
 +
&&\\
 +
& = & \displaystyle{-\cos x+\frac{\cos^3x}{3}+C}\\
 +
\end{array}</math>
 
|-
 
|-
 
|
 
|

Revision as of 12:51, 10 February 2016

Compute the following integrals.

a)

b)

c)


Foundations:  
Review -substitution
Integration by parts
Partial fraction decomposition
Trig identities

Solution:

(a)

Step 1:  
We first distribute to get
.
Now, for the first integral on the right hand side of the last equation, we use integration by parts.
Let and . Then, and .
So, we have
Step 2:  
Now, for the one remaining integral, we use -substitution.
Let . Then, .
So, we have

(b)

Step 1:  
First, we add and subtract from the numerator.
So, we have
Step 2:  
Now, we need to use partial fraction decomposition for the second integral.
Since , we let .
Multiplying both sides of the last equation by ,
we get .
If we let , the last equation becomes .
If we let , then we get . Thus, .
So, in summation, we have .
Step 3:  
If we plug in the last equation from Step 2 into our final integral in Step 1, we have
Step 4:  
For the final remaining integral, we use -substitution.
Let . Then, and .
Thus, our final integral becomes
Therefore, the final answer is

(c)

Step 1:  
First, we write .
Using the identity , we get .
If we use this identity, we have
    .
Step 2:  
Now, we proceed by -substitution. Let . Then, .
So we have
Final Answer:  
(a)
(b)
(c)

Return to Sample Exam