Difference between revisions of "009B Sample Final 1, Problem 4"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 69: | Line 69: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
− | |First, we add and subtract <math>x</math> from the numerator. | + | |First, we add and subtract <math>x</math> from the numerator. |
|- | |- | ||
− | |<math>\int \frac{2x^2+1}{2x^2+x}~dx=\int\frac{2x^2+x-x+1}{2x^2+x}~dx=\int \frac{2x^2+x}{2x^2+x}~dx+\int\frac{1-x}{2x^2+x}~dx=\int ~dx+\int\frac{1-x}{2x^2+x}~dx </math> | + | |So, we have |
+ | |- | ||
+ | | | ||
+ | ::<math>\begin{array}{rcl} | ||
+ | \displaystyle{\int \frac{2x^2+1}{2x^2+x}~dx} & = & \displaystyle{\int\frac{2x^2+x-x+1}{2x^2+x}~dx}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\int \frac{2x^2+x}{2x^2+x}~dx+\int\frac{1-x}{2x^2+x}~dx}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\int ~dx+\int\frac{1-x}{2x^2+x}~dx}\\ | ||
+ | \end{array}</math> | ||
|} | |} | ||
Line 81: | Line 90: | ||
|Since <math>2x^2+x=x(2x+1)</math>, we let <math>\frac{1-x}{2x^2+x}=\frac{A}{x}+\frac{B}{2x+1}</math>. | |Since <math>2x^2+x=x(2x+1)</math>, we let <math>\frac{1-x}{2x^2+x}=\frac{A}{x}+\frac{B}{2x+1}</math>. | ||
|- | |- | ||
− | |Multiplying both sides of the last equation by <math>x(2x+1)</math>, we get <math>1-x=A(2x+1)+Bx</math>. | + | |Multiplying both sides of the last equation by <math>x(2x+1)</math>, |
+ | |- | ||
+ | |we get <math>1-x=A(2x+1)+Bx</math>. | ||
|- | |- | ||
|If we let <math>x=0</math>, the last equation becomes <math>1=A</math>. | |If we let <math>x=0</math>, the last equation becomes <math>1=A</math>. | ||
Line 95: | Line 106: | ||
|If we plug in the last equation from Step 2 into our final integral in Step 1, we have | |If we plug in the last equation from Step 2 into our final integral in Step 1, we have | ||
|- | |- | ||
− | |<math>\int \frac{2x^2+1}{2x^2+x}~dx=\int ~dx+\int\frac{1}{x}~dx+\int\frac{-3}{2x+1}~dx=x+\ln x+ \int\frac{-3}{2x+1}~dx</math> | + | | |
+ | ::<math>\begin{array}{rcl} | ||
+ | \displaystyle{\int \frac{2x^2+1}{2x^2+x}~dx} & = & \displaystyle{\int ~dx+\int\frac{1}{x}~dx+\int\frac{-3}{2x+1}~dx}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{x+\ln x+ \int\frac{-3}{2x+1}~dx}\\ | ||
+ | \end{array}</math> | ||
|} | |} | ||
Line 107: | Line 123: | ||
|Thus, our final integral becomes | |Thus, our final integral becomes | ||
|- | |- | ||
− | |<math>\int \frac{2x^2+1}{2x^2+x}~dx=x+\ln x+ \int\frac{-3}{2x+1}~dx=x+\ln x+\int\frac{-3}{2u}~du=x+\ln x-\frac{3}{2}\ln u +C</math> | + | | |
+ | ::<math>\begin{array}{rcl} | ||
+ | \displaystyle{\int \frac{2x^2+1}{2x^2+x}~dx} & = & \displaystyle{x+\ln x+ \int\frac{-3}{2x+1}~dx}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{x+\ln x+\int\frac{-3}{2u}~du}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{x+\ln x-\frac{3}{2}\ln u +C}\\ | ||
+ | \end{array}</math> | ||
|- | |- | ||
|Therefore, the final answer is | |Therefore, the final answer is | ||
Line 120: | Line 143: | ||
|First, we write <math style="vertical-align: -13px">\int\sin^3x~dx=\int \sin^2 x \sin x~dx</math>. | |First, we write <math style="vertical-align: -13px">\int\sin^3x~dx=\int \sin^2 x \sin x~dx</math>. | ||
|- | |- | ||
− | |Using the identity <math style="vertical-align: -2px">\sin^2x+\cos^2x=1</math>, we get <math style="vertical-align: -1px">\sin^2x=1-\cos^2x</math>. If we use this identity, we have | + | |Using the identity <math style="vertical-align: -2px">\sin^2x+\cos^2x=1</math>, we get <math style="vertical-align: -1px">\sin^2x=1-\cos^2x</math>. |
+ | |- | ||
+ | |If we use this identity, we have | ||
|- | |- | ||
| <math style="vertical-align: -13px">\int\sin^3x~dx=\int (1-\cos^2x)\sin x~dx</math>. | | <math style="vertical-align: -13px">\int\sin^3x~dx=\int (1-\cos^2x)\sin x~dx</math>. | ||
Line 130: | Line 155: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
− | |Now, we proceed by <math>u</math>-substitution. Let <math>u=\cos x</math>. Then, <math>du=-\sin x dx</math>. So we have | + | |Now, we proceed by <math>u</math>-substitution. Let <math>u=\cos x</math>. Then, <math>du=-\sin x dx</math>. |
+ | |- | ||
+ | |So we have | ||
|- | |- | ||
− | |<math | + | | |
+ | ::<math>\begin{array}{rcl} | ||
+ | \displaystyle{\int\sin^3x~dx} & = & \displaystyle{\int -(1-u^2)~du}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{-u+\frac{u^3}{3}+C}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{-\cos x+\frac{\cos^3x}{3}+C}\\ | ||
+ | \end{array}</math> | ||
|- | |- | ||
| | | |
Revision as of 12:51, 10 February 2016
Compute the following integrals.
a)
b)
c)
Foundations: |
---|
Review -substitution |
Integration by parts |
Partial fraction decomposition |
Trig identities |
Solution:
(a)
Step 1: |
---|
We first distribute to get |
. |
Now, for the first integral on the right hand side of the last equation, we use integration by parts. |
Let and . Then, and . |
So, we have |
|
Step 2: |
---|
Now, for the one remaining integral, we use -substitution. |
Let . Then, . |
So, we have |
|
(b)
Step 1: |
---|
First, we add and subtract from the numerator. |
So, we have |
|
Step 2: |
---|
Now, we need to use partial fraction decomposition for the second integral. |
Since , we let . |
Multiplying both sides of the last equation by , |
we get . |
If we let , the last equation becomes . |
If we let , then we get . Thus, . |
So, in summation, we have . |
Step 3: |
---|
If we plug in the last equation from Step 2 into our final integral in Step 1, we have |
|
Step 4: |
---|
For the final remaining integral, we use -substitution. |
Let . Then, and . |
Thus, our final integral becomes |
|
Therefore, the final answer is |
(c)
Step 1: |
---|
First, we write . |
Using the identity , we get . |
If we use this identity, we have |
. |
Step 2: |
---|
Now, we proceed by -substitution. Let . Then, . |
So we have |
|
Final Answer: |
---|
(a) |
(b) |
(c) |