Difference between revisions of "009C Sample Final 1, Problem 9"

From Grad Wiki
Jump to navigation Jump to search
Line 11: Line 11:
 
|-
 
|-
 
|<math>L=\int_{\alpha_1}^{\alpha_2} \sqrt{r^2+\bigg(\frac{dr}{d\theta}\bigg)^2}d\theta</math>.
 
|<math>L=\int_{\alpha_1}^{\alpha_2} \sqrt{r^2+\bigg(\frac{dr}{d\theta}\bigg)^2}d\theta</math>.
 +
|-
 +
|Review trig substitution.
 
|}
 
|}
  
Line 32: Line 34:
 
|So, the integral becomes  
 
|So, the integral becomes  
 
|-
 
|-
|<math>L=\int_{\theta=0}^{\theta=2\pi}\sqrt{\tan^2x+1}\sec^2xdx=\int_{\theta=0}^{\theta=2\pi}\sec^3xdx</math>.
+
|
|-
+
::<math>\begin{array}{rcl}
|We integrate to get <math>L=\frac{1}{2}\sec x \tan x +\frac{1}{2}\ln|\sec x +\tan x|\bigg|_{\theta=0}^{\theta=2\pi}</math>.
+
\displaystyle{L} & = & \displaystyle{\int_{\theta=0}^{\theta=2\pi}\sqrt{\tan^2x+1}\sec^2xdx}\\
 +
&&\\
 +
& = & \displaystyle{\int_{\theta=0}^{\theta=2\pi}\sec^3xdx}\\
 +
&&\\
 +
& = & \displaystyle{\frac{1}{2}\sec x \tan x +\frac{1}{2}\ln|\sec x +\tan x|\bigg|_{\theta=0}^{\theta=2\pi}}\\
 +
\end{array}</math>
 
|}
 
|}
  
Line 44: Line 51:
 
|So, we have
 
|So, we have
 
|-
 
|-
|<math>L=\frac{1}{2}\sec (\tan^{-1}(\theta)) \theta +\frac{1}{2}\ln|\sec (\tan^{-1}(\theta)) +\theta|\bigg|_{0}^{2\pi}</math>.
+
|
 +
::<math>\begin{array}{rcl}
 +
\displaystyle{L} & = & \displaystyle{\frac{1}{2}\sec (\tan^{-1}(\theta)) \theta +\frac{1}{2}\ln|\sec (\tan^{-1}(\theta)) +\theta|\bigg|_{0}^{2\pi}}\\
 +
&&\\
 +
& = & \displaystyle{\frac{1}{2}\sec(\tan^{-1}(2\pi))2\pi+\frac{1}{2}\ln|\sec(\tan^{-1}(2\pi))+2\pi|}\\
 +
\end{array}</math>
 
|-
 
|-
|Thus, <math>L=\frac{1}{2}\sec(\tan^{-1}(2\pi))2\pi+\frac{1}{2}\ln|\sec(\tan^{-1}(2\pi))+2\pi|</math>.
+
|
 
|}
 
|}
  

Revision as of 13:19, 10 February 2016

A curve is given in polar coordinates by

Find the length of the curve.

Foundations:  
The formula for the arc length of a polar curve with is
.
Review trig substitution.

Solution:

Step 1:  
First, we need to calculate . Since .
Using the formula in Foundations, we have
.
Step 2:  
Now, we proceed using trig substitution. Let . Then, .
So, the integral becomes
Step 3:  
Since , we have .
So, we have
Final Answer:  

Return to Sample Exam