Difference between revisions of "009C Sample Final 1, Problem 7"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 30: | Line 30: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
− | | | + | |First, recall we have |
+ | |- | ||
+ | |<math>y'=\frac{dy}{dx}=\frac{\frac{dr}{d\theta}\sin\theta+r\cos\theta}{\frac{dr}{d\theta}\cos\theta-r\sin\theta}</math>. | ||
|- | |- | ||
− | | | + | |Since <math>r=1+\sin\theta</math>, <math>\frac{dr}{d\theta}=\cos\theta</math>. |
|- | |- | ||
− | | | + | |Hence, <math>y'=\frac{\cos\theta\sin\theta+(1+\sin\theta)\cos\theta}{\cos^2\theta-(1+\sin\theta)\sin\theta}</math> |
|} | |} | ||
Line 40: | Line 42: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
− | | | + | |Thus, we have |
− | + | ::<math>\begin{array}{rcl} | |
− | + | \displaystyle{y'} & = & \displaystyle{\frac{2\cos\theta\sin\theta+\cos\theta}{\cos^2\theta-\sin^2\theta-\sin\theta}}\\ | |
− | { | + | &&\\ |
− | + | & = & \displaystyle{\frac{\sin(2\theta)+\cos\theta}{\cos(2\theta)-\sin\theta}}\\ | |
− | + | \end{array}</math> | |
− | |||
− | |||
− | |||
|} | |} | ||
Line 74: | Line 73: | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
− | |'''(a)''' | + | |'''(a)''' See '''(a)''' above for the graph. |
|- | |- | ||
− | |'''(b)''' | + | |'''(b)''' <math>y'=\frac{\sin(2\theta)+\cos\theta}{\cos(2\theta)-\sin\theta}</math> |
|- | |- | ||
|'''(c)''' | |'''(c)''' | ||
|} | |} | ||
[[009C_Sample_Final_1|'''<u>Return to Sample Exam</u>''']] | [[009C_Sample_Final_1|'''<u>Return to Sample Exam</u>''']] |
Revision as of 12:09, 9 February 2016
A curve is given in polar coordinates by
a) Sketch the curve.
b) Compute .
c) Compute .
Foundations: |
---|
Solution:
(a)
Step 1: |
---|
Insert sketch of graph |
(b)
Step 1: |
---|
First, recall we have |
. |
Since , . |
Hence, |
Step 2: |
---|
Thus, we have
|
(c)
Step 1: |
---|
Step 2: |
---|
Final Answer: |
---|
(a) See (a) above for the graph. |
(b) |
(c) |