Difference between revisions of "009C Sample Final 1, Problem 8"

From Grad Wiki
Jump to navigation Jump to search
Line 57: Line 57:
 
!Step 3:  
 
!Step 3:  
 
|-
 
|-
|
+
|Lastly, we evaluate to get
 
|-
 
|-
 
|
 
|
 +
::<math>\begin{array}{rcl}
 +
\displaystyle{\frac{3}{2}\theta-\cos(2\theta)-\frac{\sin(4\theta)}{8}\bigg|_{-\frac{\pi}{4}}^{\frac{3\pi}{4}}} & = & \\
 +
&&\\
 +
& = & \displaystyle{\frac{3}{2}\frac{3\pi}{4}-\cos\bigg(\frac{3\pi}{2}\bigg)-\frac{\sin(3\pi)}{8}-\bigg[\frac{3}{2}\bigg(-\frac{\pi}{4}\bigg)-\cos\bigg(-\frac{\pi}{2}\bigg)-\frac{\sin(-\pi)}{8}\bigg]}\\
 +
&&\\
 +
& = & \displaystyle{\frac{9\pi}{8}+\frac{3\pi}{8}}\\
 +
&&\\
 +
& = & \displaystyle{\frac{3\pi}{2}}\\
 +
\end{array}</math>
 
|}
 
|}
  
Line 65: Line 74:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|'''(a)'''
+
|'''(a)''' See part '''(a)''' above.
 
|-
 
|-
|'''(b)'''  
+
|'''(b)''' <math>\frac{3\pi}{2}</math>
 
|}
 
|}
 
[[009C_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]
 
[[009C_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]

Revision as of 17:18, 8 February 2016

A curve is given in polar coordinates by

a) Sketch the curve.

b) Find the area enclosed by the curve.


Foundations:  
Area under a polar curve

Solution:

(a)

Step 1:  
Insert sketch


(b)

Step 1:  
Since the graph has symmetry (as seen in the graph), the area of the curve is
Step 2:  
Using the double angle formula for , we have
Step 3:  
Lastly, we evaluate to get
Final Answer:  
(a) See part (a) above.
(b)

Return to Sample Exam