Difference between revisions of "Multivariate Calculus 10B, Problem 1"
Jump to navigation
Jump to search
| Line 3: | Line 3: | ||
:: <span class="exam">b) <math>\int_0^1 \int_0^{cos^{-1}(y)} e^{2x-y}~dxdy</math> | :: <span class="exam">b) <math>\int_0^1 \int_0^{cos^{-1}(y)} e^{2x-y}~dxdy</math> | ||
| − | '''solution(a):'' | + | '''solution(a):''' |
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
Revision as of 01:47, 7 February 2016
Calculate the following integrals
- a)
- b) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int_0^1 \int_0^{cos^{-1}(y)} e^{2x-y}~dxdy}
solution(a):
| Here we use change of variable, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int _0^1 \int_0^x e^{\frac{y}{x}}~dydx = \int _0^1[xe^{\frac{y}{x}}|_{y = 0}^{y = x}]~dx} |