Difference between revisions of "009B Sample Final 1, Problem 7"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
| Line 80: | Line 80: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
| − | | | + | |We start by calculating <math>\frac{dy}{dx}</math>. |
| + | |- | ||
| + | |Since <math>y=1-x^2,~ \frac{dy}{dx}=-2x</math>. | ||
|- | |- | ||
| − | | | + | |Using the formula given in the Foundations section, we have |
|- | |- | ||
| − | | | + | |<math>S=\int_0^{1}2\pi x \sqrt{1+(-2x)^2}~dx</math>. |
|} | |} | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Step 2: | !Step 2: | ||
| + | |- | ||
| + | |Now, we have <math>S=\int_0^{1}2\pi x \sqrt{1+4x^2}~dx</math> | ||
| + | |- | ||
| + | |We proceed by using trig substitution. Let <math>x=\frac{1}{2}\tan \theta</math>. Then, <math>dx=\frac{1}{2}\sec^2\theta d\theta</math>. | ||
| + | |- | ||
| + | |So, we have | ||
|- | |- | ||
| | | | ||
| + | ::<math>\begin{array}{rcl} | ||
| + | \displaystyle{\int 2\pi x \sqrt{1+4x^2}~dx} & = & \displaystyle{\int 2\pi \bigg(\frac{1}{2}\tan \theta\bigg)\sqrt{1+\tan^2\theta}\bigg(\frac{1}{2}\sec^2\theta\bigg) d\theta}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{\int \frac{\pi}{2} \tan \theta \sec \theta \sec^2\theta d\theta}\\ | ||
| + | \end{array}</math> | ||
|} | |} | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Step 3: | !Step 3: | ||
| + | |- | ||
| + | |Now, we use <math>u</math>-substitution. Let <math>u=\sec \theta</math>. Then, <math>du=\sec \theta \tan \theta d\theta</math>. | ||
| + | |- | ||
| + | |So, the integral becomes | ||
|- | |- | ||
| | | | ||
| + | ::<math>\begin{array}{rcl} | ||
| + | \displaystyle{\int 2\pi x \sqrt{1+4x^2}~dx} & = & \displaystyle{\int \frac{\pi}{2}u^2du}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{\frac{\pi}{6}u^3+C}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{\frac{\pi}{6}\sec^3\theta+C}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{\frac{\pi}{6}(\sqrt{1+4x^2})^3+C}\\ | ||
| + | \end{array}</math> | ||
| + | |} | ||
| + | |||
| + | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
| + | !Step 4: | ||
| + | |- | ||
| + | |We started with a definite integral. So, using Step 2 and 3, we have | ||
|- | |- | ||
| | | | ||
| + | ::<math>\begin{array}{rcl} | ||
| + | S & = & \displaystyle{\int_0^1 2\pi x \sqrt{1+4x^2}~dx}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{\frac{\pi}{6}(\sqrt{1+4x^2})^3}\bigg|_0^1\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{\frac{\pi(\sqrt{5})^3}{6}-\frac{\pi}{6}}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{\frac{\pi}{6}(5\sqrt{5}-1)}\\ | ||
| + | \end{array}</math> | ||
|} | |} | ||
| Line 106: | Line 147: | ||
|'''(a)''' <math>\ln (2+\sqrt{3})</math> | |'''(a)''' <math>\ln (2+\sqrt{3})</math> | ||
|- | |- | ||
| − | |'''(b)''' | + | |'''(b)''' <math>\frac{\pi}{6}(5\sqrt{5}-1)</math> |
|} | |} | ||
[[009B_Sample_Final_1|'''<u>Return to Sample Exam</u>''']] | [[009B_Sample_Final_1|'''<u>Return to Sample Exam</u>''']] | ||
Revision as of 17:31, 4 February 2016
a) Find the length of the curve
- .
b) The curve
is rotated about the -axis. Find the area of the resulting surface.
| Foundations: |
|---|
| The formula for the length of a curve where is |
| . |
| integral of |
| The surface area of a function rotated about the -axis is given by |
| where . |
Solution:
(a)
| Step 1: |
|---|
| First, we calculate . |
| Since . |
| Using the formula given in the Foundations section, we have |
| . |
| Step 2: |
|---|
| Now, we have: |
|
|
| Step 3: |
|---|
| Finally, |
|
|
(b)
| Step 1: |
|---|
| We start by calculating . |
| Since . |
| Using the formula given in the Foundations section, we have |
| . |
| Step 2: |
|---|
| Now, we have |
| We proceed by using trig substitution. Let . Then, . |
| So, we have |
|
|
| Step 3: |
|---|
| Now, we use -substitution. Let . Then, . |
| So, the integral becomes |
|
|
| Step 4: |
|---|
| We started with a definite integral. So, using Step 2 and 3, we have |
|
|
| Final Answer: |
|---|
| (a) |
| (b) |