Difference between revisions of "009B Sample Midterm 2, Problem 3"
Jump to navigation
Jump to search
(→Temp 1) |
|||
Line 20: | Line 20: | ||
|We multiply the product inside the integral to get | |We multiply the product inside the integral to get | ||
|- | |- | ||
− | |<math>\int_1^2\bigg(2t+\frac{3}{t^2}\bigg)\bigg(4t^2-\frac{5}{t}\bigg)~dt=\int_1^2 \bigg(8t^3-10+12-\frac{15}{t^3}\bigg)~dt=\int_1^2 (8t^3+2-15t^{-3})~dt</math> | + | | <math>\int_1^2\bigg(2t+\frac{3}{t^2}\bigg)\bigg(4t^2-\frac{5}{t}\bigg)~dt=\int_1^2 \bigg(8t^3-10+12-\frac{15}{t^3}\bigg)~dt=\int_1^2 (8t^3+2-15t^{-3})~dt</math>. |
|} | |} | ||
Line 28: | Line 28: | ||
|We integrate to get | |We integrate to get | ||
|- | |- | ||
− | |<math>\int_1^2\bigg(2t+\frac{3}{t^2}\bigg)\bigg(4t^2-\frac{5}{t}\bigg)~dt=\left. 2t^4+2t+\frac{15}{2}t^{-2}\right|_1^2</math>. | + | | <math>\int_1^2\bigg(2t+\frac{3}{t^2}\bigg)\bigg(4t^2-\frac{5}{t}\bigg)~dt=\left. 2t^4+2t+\frac{15}{2}t^{-2}\right|_1^2</math>. |
|- | |- | ||
|We now evaluate to get | |We now evaluate to get | ||
|- | |- | ||
− | |<math>\int_1^2\bigg(2t+\frac{3}{t^2}\bigg)\bigg(4t^2-\frac{5}{t}\bigg)~dt=2(2)^4+2(2)+\frac{15}{2(2)^2}-\bigg(2+2+\frac{15}{2}\bigg)=36+\frac{15}{8}-4-\frac{15}{2}=\frac{211}{8}</math> | + | | <math>\int_1^2\bigg(2t+\frac{3}{t^2}\bigg)\bigg(4t^2-\frac{5}{t}\bigg)~dt=2(2)^4+2(2)+\frac{15}{2(2)^2}-\bigg(2+2+\frac{15}{2}\bigg)=36+\frac{15}{8}-4-\frac{15}{2}=\frac{211}{8}</math>. |
|} | |} | ||
+ | |||
== Temp 2 == | == Temp 2 == | ||
'''(b)''' | '''(b)''' |
Revision as of 23:53, 2 February 2016
Evaluate
- a)
- b)
Foundations: |
---|
Review -substitution |
Solution:
Temp 1
(a)
Step 1: |
---|
We multiply the product inside the integral to get |
. |
Step 2: |
---|
We integrate to get |
. |
We now evaluate to get |
. |
Temp 2
(b)
Step 1: |
---|
We use -substitution. Let . Then, and . Also, we need to change the bounds of integration. |
Plugging in our values into the equation , we get and . |
Therefore, the integral becomes |
Step 2: |
---|
We now have: |
So, we have |
Temp 3
Final Answer: |
---|
(a) |
(b) |