Difference between revisions of "009B Sample Final 1, Problem 6"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 31: | Line 31: | ||
|For the remaining integral, we need to use <math>u</math>-substitution. Let <math>u=-x</math>. Then, <math>du=-dx</math>. | |For the remaining integral, we need to use <math>u</math>-substitution. Let <math>u=-x</math>. Then, <math>du=-dx</math>. | ||
|- | |- | ||
− | | | + | |Since the integral is a definite integral, we need to change the bounds of integration. |
|- | |- | ||
− | |<math>\int_0^{\infty} xe^{-x}~dx=\lim_{a\rightarrow \infty} \left.-xe^{-x}\right|_0^a-\int_0^a-e^{-x}dx</math> | + | |Plugging in our values into the equation <math>u=-x</math>, we get <math>u_1=0</math> and <math>u_2=-a</math>. |
+ | |- | ||
+ | |Thus, the integral becomes | ||
+ | |- | ||
+ | |<math>\int_0^{\infty} xe^{-x}~dx=\lim_{a\rightarrow \infty} \left.-xe^{-x}\right|_0^a-\int_0^{-a}e^{u}du=\lim_{a\rightarrow \infty} \left.-xe^{-x}\right|_0^a-\left.e^{u}\right|_0^{-a}=\lim_{a\rightarrow \infty} -ae^{-a}-(e^{-a}-1)</math> | ||
+ | |} | ||
+ | |||
+ | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
+ | !Step 3: | ||
+ | |- | ||
+ | |Now, we evaluate to get | ||
+ | |- | ||
+ | |<math>\int_0^{\infty} xe^{-x}~dx=\lim_{a\rightarrow \infty} -ae^{-a}-(e^{-a}-1)=\lim_{a\rightarrow \infty} \frac{-a}{e^a}-\frac{1}{e^a}+1=\lim_{a\rightarrow \infty} \frac{-a-1}{e^a}+1</math>. | ||
+ | |- | ||
+ | |Using L'Hopital's Rule, we get | ||
+ | |- | ||
+ | |<math>\int_0^{\infty} xe^{-x}~dx=\lim_{a\rightarrow \infty} \frac{-1}{e^a}+1=0+1=1</math>. | ||
+ | |- | ||
+ | | | ||
|} | |} | ||
Line 65: | Line 83: | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
− | |'''(a)''' | + | |'''(a)''' <math>1</math> |
|- | |- | ||
|'''(b)''' | |'''(b)''' | ||
|} | |} | ||
[[009B_Sample_Final_1|'''<u>Return to Sample Exam</u>''']] | [[009B_Sample_Final_1|'''<u>Return to Sample Exam</u>''']] |
Revision as of 16:26, 2 February 2016
Evaluate the improper integrals:
- a)
- b)
Foundations: |
---|
Review integration by parts |
Solution:
(a)
Step 1: |
---|
First, we write . |
Now, we proceed using integration by parts. Let and . Then, and . |
Thus, the integral becomes |
Step 2: |
---|
For the remaining integral, we need to use -substitution. Let . Then, . |
Since the integral is a definite integral, we need to change the bounds of integration. |
Plugging in our values into the equation , we get and . |
Thus, the integral becomes |
Step 3: |
---|
Now, we evaluate to get |
. |
Using L'Hopital's Rule, we get |
. |
(b)
Step 1: |
---|
Step 2: |
---|
Step 3: |
---|
Final Answer: |
---|
(a) |
(b) |