Difference between revisions of "009B Sample Final 1, Problem 6"

From Grad Wiki
Jump to navigation Jump to search
Line 21: Line 21:
 
|Now, we proceed using integration by parts. Let <math>u=x</math> and <math>dv=e^{-x}dx</math>. Then, <math>du=dx</math> and <math>v=-e^{-x}</math>.
 
|Now, we proceed using integration by parts. Let <math>u=x</math> and <math>dv=e^{-x}dx</math>. Then, <math>du=dx</math> and <math>v=-e^{-x}</math>.
 
|-
 
|-
|
+
|Thus, the integral becomes
 
|-
 
|-
|
+
|<math>\int_0^{\infty} xe^{-x}~dx=\lim_{a\rightarrow \infty} \left.-xe^{-x}\right|_0^a-\int_0^a-e^{-x}dx</math>
 
|}
 
|}
  
Line 29: Line 29:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|
+
|For the remaining integral, we need to use <math>u</math>-substitution. Let <math>u=-x</math>. Then, <math>du=-dx</math>.
 
|-
 
|-
|
+
|So, the integral becomes
 
|-
 
|-
|
+
|<math>\int_0^{\infty} xe^{-x}~dx=\lim_{a\rightarrow \infty} \left.-xe^{-x}\right|_0^a-\int_0^a-e^{-x}dx</math>
 
|}
 
|}
  

Revision as of 16:06, 2 February 2016

Evaluate the improper integrals:

a)
b)
Foundations:  
Review integration by parts

Solution:

(a)

Step 1:  
First, we write .
Now, we proceed using integration by parts. Let and . Then, and .
Thus, the integral becomes
Step 2:  
For the remaining integral, we need to use -substitution. Let . Then, .
So, the integral becomes

(b)

Step 1:  
Step 2:  
Step 3:  
Final Answer:  
(a)
(b)

Return to Sample Exam