Difference between revisions of "009B Sample Final 1, Problem 2"

From Grad Wiki
Jump to navigation Jump to search
Line 81: Line 81:
 
!Step 1:    
 
!Step 1:    
 
|-
 
|-
|  
+
|By the '''Fundamental Theorem of Calculus, Part 1''',
 
|-
 
|-
|
+
|<math>\frac{d}{dx}\bigg(\int_{-1}^{x} \sin(t^2)2t~dt\bigg)=\sin(x^2)2x</math>
|}
 
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|
 
|-
 
|
 
|-
 
|
 
 
|}
 
|}
  
Line 115: Line 105:
 
|Then, <math>\int_a^b f(x)~dx=F(b)-F(a)</math>.
 
|Then, <math>\int_a^b f(x)~dx=F(b)-F(a)</math>.
 
|-
 
|-
|'''(d)'''  
+
|'''(d)''' <math>\sin(x^2)2x</math>
 
|}
 
|}
 
[[009B_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]
 
[[009B_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]

Revision as of 15:42, 2 February 2016

We would like to evaluate

.

a) Compute .

b) Find .

c) State the fundamental theorem of calculus.

d) Use the fundamental theorem of calculus to compute without first computing the integral.

Foundations:  
-substitution

Solution:

(a)

Step 1:  
We proceed using -substitution. Let . Then, .
Since this is a definite integral, we need to change the bounds of integration.
Plugging in our values into the equation , we get and .
Step 2:  
So, we have
.

(b)

Step 1:  
From part (a), we have .
Step 2:  
If we take the derivative, we get .

(c)

Step 1:  
The Fundamental Theorem of Calculus has two parts.
The Fundamental Theorem of Calculus, Part 1
Let be continuous on and let .
Then, is a differentiable function on and .
Step 2:  
The Fundamental Theorem of Calculus, Part 2
Let be continuous on and let be any antiderivative of .
Then,

(d)

Step 1:  
By the Fundamental Theorem of Calculus, Part 1,
Final Answer:  
(a)
(b)
(c) The Fundamental Theorem of Calculus, Part 1
Let be continuous on and let .
Then, is a differentiable function on and .
The Fundamental Theorem of Calculus, Part 2
Let be continuous on and let be any antiderivative of .
Then, .
(d)

Return to Sample Exam