Difference between revisions of "009B Sample Final 1, Problem 1"

From Grad Wiki
Jump to navigation Jump to search
Line 11: Line 11:
 
!Foundations:    
 
!Foundations:    
 
|-
 
|-
|
+
|Link to Riemann sums page
 
|}
 
|}
  
Line 71: Line 71:
 
!Step 1:    
 
!Step 1:    
 
|-
 
|-
|  
+
|To find the actual area of the region, we need to calculate
 
|-
 
|-
|
+
|<math>\int_{-3}^3 2(-x^2+9)~dx</math>
 
|}
 
|}
  
Line 79: Line 79:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|  
+
|We integrate to get
|-
 
|
 
 
|-
 
|-
 
|
 
|
 +
::<math>\begin{array}{rcl}
 +
\displaystyle{\int_{-3}^3 2(-x^2+9)~dx} & = & \displaystyle{2\bigg(\frac{-x^3}{3}+9x\bigg)\bigg|_{-3}^3}\\
 +
&&\\
 +
& = & \displaystyle{2\bigg(\frac{-3^3}{3}+9\times 3\bigg)-2\bigg(\frac{-(-3)^3}{3}+9(-3)\bigg)}\\
 +
&&\\
 +
& = & \displaystyle{2(-9+27)-2(9-27)}\\
 +
&&\\
 +
& = & \displaystyle{2(18)-2(-18)}\\
 +
&&\\
 +
& = & \displaystyle{72}\\
 +
\end{array}</math>
 
|}
 
|}
  
Line 93: Line 102:
 
|'''(b)'''  
 
|'''(b)'''  
 
|-
 
|-
|'''(c)'''  
+
|'''(c)''' <math>72</math>
 
|}
 
|}
 
[[009B_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]
 
[[009B_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]

Revision as of 17:52, 4 February 2016

Consider the region bounded by the following two functions:

and

a) Using the lower sum with three rectangles having equal width , approximate the area.

b) Using the upper sum with three rectangles having equal width, approximate the area.

c) Find the actual area of the region.

Foundations:  
Link to Riemann sums page

Solution:

(a)

Step 1:  
Step 2:  

(b)

Step 1:  
Step 2:  
Step 3:  

(c)

Step 1:  
To find the actual area of the region, we need to calculate
Step 2:  
We integrate to get
Final Answer:  
(a)
(b)
(c)

Return to Sample Exam