Difference between revisions of "009C Sample Final 1, Problem 6"

From Grad Wiki
Jump to navigation Jump to search
Line 11: Line 11:
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1:    
 
!Step 1:    
 +
|-
 +
|First, we make a table to find the coefficients of the Taylor polynomial.
 
|-
 
|-
 
|
 
|
 +
<table border="1" cellspacing="0" cellpadding="6" align = "center">
 +
  <tr>
 +
    <td align = "center"><math> n</math></td>
 +
    <td align = "center"><math> f^{(n)}(x) </math></td>
 +
    <td align = "center"><math> f^{(n)}(a) </math></td>
 +
    <td align = "center"><math> \frac{f^{(n)}(a)}{n!} </math></td>
 +
  </tr>
 +
  <tr>
 +
    <td align = "center"><math>0</math></td>
 +
    <td align = "center"><math>  </math></td>
 +
    <td align = "center"><math>  </math></td>
 +
    <td align = "center"><math> </math></td>
 +
  </tr>
 +
<tr>
 +
    <td align = "center"><math>1</math></td>
 +
    <td align = "center"><math>  </math></td>
 +
    <td align = "center"><math>  </math></td>
 +
    <td align = "center"><math> </math></td>
 +
  </tr>
 +
<tr>
 +
    <td align = "center"><math>2</math></td>
 +
    <td align = "center"><math>  </math></td>
 +
    <td align = "center"><math>  </math></td>
 +
    <td align = "center"><math> </math></td>
 +
  </tr>
 +
<tr>
 +
    <td align = "center"><math>3</math></td>
 +
    <td align = "center"><math>  </math></td>
 +
    <td align = "center"><math>  </math></td>
 +
    <td align = "center"><math> </math></td>
 +
  </tr>
 +
<tr>
 +
    <td align = "center"><math>4</math></td>
 +
    <td align = "center"><math>  </math></td>
 +
    <td align = "center"><math>  </math></td>
 +
    <td align = "center"><math> </math></td>
 +
  </tr>
 +
</table>
 
|-
 
|-
 
|
 
|
Line 25: Line 65:
 
|-
 
|-
 
|
 
|
|-
 
|
 
|-
 
 
|
 
|
 
|}
 
|}

Revision as of 10:52, 8 February 2016

Find the Taylor polynomial of degree 4 of at .

Foundations:  

Solution:

Step 1:  
First, we make a table to find the coefficients of the Taylor polynomial.
Step 2:  
Final Answer:  

Return to Sample Exam