Difference between revisions of "009C Sample Final 1, Problem 5"

From Grad Wiki
Jump to navigation Jump to search
Line 12: Line 12:
 
!Foundations:    
 
!Foundations:    
 
|-
 
|-
|
+
|Review ratio test.
 
|}
 
|}
  
Line 22: Line 22:
 
!Step 1:    
 
!Step 1:    
 
|-
 
|-
|
+
|To find the radius of convergence, we use the ratio test. We have
|-
 
|
 
|-
 
|
 
 
|-
 
|-
 
|
 
|
 +
::<math>\begin{array}{rcl}
 +
\displaystyle{\lim_{n \rightarrow \infty}\bigg|\frac{a_{n+1}}{a_n}\bigg|} & = & \displaystyle{\lim_{n \rightarrow \infty}\bigg|\frac{(n+1)x^{n+1}}{nx^n}}\bigg|\\
 +
&&\\
 +
& = & \displaystyle{\lim_{n \rightarrow \infty}\bigg|\frac{n+1}{n}x\bigg|}\\
 +
&&\\
 +
& = & \displaystyle{|x|\lim_{n \rightarrow \infty}\frac{n+1}{n}}\\
 +
&&\\
 +
& = & \displaystyle{|x|}\\
 +
\end{array}</math>
 
|}
 
|}
  
Line 34: Line 39:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|
+
|Thus, we have <math>|x|<1</math> and the radius of convergence of this series is <math>1</math>.
|-
 
|
 
|-
 
|
 
 
|}
 
|}
  
Line 46: Line 47:
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|
+
|From part (a), we know the series converges inside the interval <math>(-1,1)</math>.
 
|-
 
|-
|
+
|Now, we need to check the endpoints of the interval for convergence.
 
|-
 
|-
 
|
 
|
Line 56: Line 57:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|
+
|For <math>x=1</math>, the series becomes <math>\sum_{n=1}^{\infty}n</math>, which diverges by the Divergence Test.
 
|}
 
|}
  
Line 62: Line 63:
 
!Step 3: &nbsp;
 
!Step 3: &nbsp;
 
|-
 
|-
|
+
|For <math>x=-1</math>, the series becomes <math>\sum_{n=1}^{\infty}(-1)^n n</math>, which diverges by the Divergence Test.
 
|-
 
|-
|
+
|Thus, the interval of convergence is <math>(-1,1)</math>.
 
|}
 
|}
  
Line 90: Line 91:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|'''(a)'''
+
|'''(a)''' <math>1</math>
 
|-
 
|-
|'''(b)'''  
+
|'''(b)''' <math>(-1,1)</math>
 
|-
 
|-
 
|'''(c)'''  
 
|'''(c)'''  
 
|}
 
|}
 
[[009C_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]
 
[[009C_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]

Revision as of 19:05, 8 February 2016

Let

a) Find the radius of convergence of the power series.

b) Determine the interval of convergence of the power series.

c) Obtain an explicit formula for the function .

Foundations:  
Review ratio test.

Solution:

(a)

Step 1:  
To find the radius of convergence, we use the ratio test. We have
Step 2:  
Thus, we have and the radius of convergence of this series is .

(b)

Step 1:  
From part (a), we know the series converges inside the interval .
Now, we need to check the endpoints of the interval for convergence.
Step 2:  
For , the series becomes , which diverges by the Divergence Test.
Step 3:  
For , the series becomes , which diverges by the Divergence Test.
Thus, the interval of convergence is .

(c)

Step 1:  
Step 2:  
Final Answer:  
(a)
(b)
(c)

Return to Sample Exam