Difference between revisions of "009C Sample Final 1, Problem 2"

From Grad Wiki
Jump to navigation Jump to search
Line 8: Line 8:
 
!Foundations:    
 
!Foundations:    
 
|-
 
|-
|
+
|Review geometric series.
 
|}
 
|}
  
Line 18: Line 18:
 
!Step 1:    
 
!Step 1:    
 
|-
 
|-
|
+
|First, we write
|-
 
|
 
|-
 
|
 
 
|-
 
|-
 
|
 
|
 +
::<math>\begin{array}{rcl}
 +
\displaystyle{\sum_{n=0}^{\infty} (-2)^n e^{-n}} & = & \displaystyle{\sum_{n=0}^{\infty} \frac{(-2)^n}{e^n}}\\
 +
&&\\
 +
& = & \displaystyle{\sum_{n=0}^{\infty} \bigg(\frac{-2}{e}\bigg)^n}\\
 +
\end{array}</math>
 
|}
 
|}
  
Line 30: Line 31:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|
+
|Since <math>2<e</math>, <math>\bigg|-\frac{2}{e}\bigg|<1</math>. So,
 
|-
 
|-
|
+
|<math>\sum_{n=0}^{\infty} (-2)^ne^{-n}=\frac{1}{1+\frac{2}{e}}=\frac{1}{\frac{e+2}{e}}=\frac{e}{e+2}</math>.
|-
 
|
 
 
|}
 
|}
  
Line 66: Line 65:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|'''(a)'''
+
|'''(a)''' <math>\frac{e}{e+2}</math>
 
|-
 
|-
 
|'''(b)'''  
 
|'''(b)'''  
 
|}
 
|}
 
[[009C_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]
 
[[009C_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]

Revision as of 19:37, 8 February 2016

Find the sum of the following series:

a)

b)

Foundations:  
Review geometric series.

Solution:

(a)

Step 1:  
First, we write
Step 2:  
Since , . So,
.

(b)

Step 1:  
Step 2:  
Step 3:  
Final Answer:  
(a)
(b)

Return to Sample Exam