Difference between revisions of "009A Sample Final 1, Problem 10"

From Grad Wiki
Jump to navigation Jump to search
Line 21: Line 21:
 
!Step 1:    
 
!Step 1:    
 
|-
 
|-
|
+
|To find the critical point, first we need to find <math>f'(x)</math>.
 
|-
 
|-
|
+
|Using the Product Rule, we have
|-
 
|
 
 
|-
 
|-
 
|
 
|
 +
::<math>\begin{array}{rcl}
 +
\displaystyle{f'(x)} & = & \displaystyle{\frac{1}{3}x^{-\frac{2}{3}}(x-8)+x^{\frac{1}{3}}}\\
 +
&&\\
 +
& = & \displaystyle{\frac{x-8}{3x^{\frac{2}{3}}}+x^{\frac{1}{3}}}\\
 +
\end{array}</math>
 
|}
 
|}
  
Line 33: Line 36:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|
+
|Notice <math>f'(x)</math> is undefined when <math>x=0</math>.
 +
|-
 +
|Now, we need to set <math>f'(x)=0</math>.
 +
|-
 +
|So, we get <math>-x^{\frac{1}{3}}=\frac{x-8}{3x^{\frac{2}{3}}}</math>.
 +
|-
 +
|We cross multiply to get <math>-3x=x-8</math>.
 
|-
 
|-
|
+
|Solving, we get <math>x=2</math>.
 
|-
 
|-
|
+
|Thus, the critical points for <math>f(x)</math> are <math>(0,0)</math> and <math>(2,2^{\frac{1}{3}}(-6))</math>.
 
|}
 
|}
  
Line 58: Line 67:
 
|}
 
|}
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
+
 
!Step 3: &nbsp;
 
|-
 
|
 
|-
 
|
 
|}
 
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|'''(a)'''
+
|'''(a)''' <math>(0,0)</math> and <math>(2,2^{\frac{1}{3}}(-6))</math>
 
|-
 
|-
 
|'''(b)'''   
 
|'''(b)'''   
 
|}
 
|}
 
[[009A_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]
 
[[009A_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]

Revision as of 16:59, 14 February 2016

Consider the following continuous function:

defined on the closed, bounded interval .

a) Find all the critical points for .

b) Determine the absolute maximum and absolute minimum values for on the interval .

Foundations:  

Solution:

(a)

Step 1:  
To find the critical point, first we need to find .
Using the Product Rule, we have
Step 2:  
Notice Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f'(x)} is undefined when Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=0} .
Now, we need to set Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f'(x)=0} .
So, we get Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -x^{\frac{1}{3}}=\frac{x-8}{3x^{\frac{2}{3}}}} .
We cross multiply to get Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -3x=x-8} .
Solving, we get Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=2} .
Thus, the critical points for Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)} are Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (0,0)} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (2,2^{\frac{1}{3}}(-6))} .

(b)

Step 1:  
Step 2:  


Final Answer:  
(a) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (0,0)} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (2,2^{\frac{1}{3}}(-6))}
(b)

Return to Sample Exam