Difference between revisions of "009A Sample Final 1, Problem 2"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 25: | Line 25: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
− | | | + | |We first calculate <math>\lim_{x\rightarrow 3^+}f(x)</math>. We have |
|- | |- | ||
| | | | ||
+ | ::<math>\begin{array}{rcl} | ||
+ | \displaystyle{\lim_{x\rightarrow 3^+}f(x)} & = & \displaystyle{\lim_{x\rightarrow 3} 4\sqrt{x+1}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{4\sqrt{3+1}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{8} | ||
+ | \end{array}</math> | ||
+ | |} | ||
+ | |||
+ | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
+ | !Step 2: | ||
|- | |- | ||
− | | | + | |Now, we calculate <math>\lim_{x\rightarrow 3^-}f(x)</math>. We have |
|- | |- | ||
| | | | ||
+ | ::<math>\begin{array}{rcl} | ||
+ | \displaystyle{\lim_{x\rightarrow 3^-}f(x)} & = & \displaystyle{\lim_{x\rightarrow 3} x+5}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{3+5}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{8} | ||
+ | \end{array}</math> | ||
|} | |} | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
− | !Step | + | !Step 3: |
|- | |- | ||
− | | | + | |Now, we calculate <math>f(3)</math>. We have |
|- | |- | ||
− | | | + | |<math>f(3)=4\sqrt{3+1}=8</math>. |
|- | |- | ||
− | | | + | |Since <math>\lim_{x\rightarrow 3^+}f(x)=\lim_{x\rightarrow 3^-}f(x)=f(3)</math>, <math>f(x)</math> is continuous. |
|} | |} | ||
Line 73: | Line 91: | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
− | |'''(a)''' | + | |'''(a)''' Since <math>\lim_{x\rightarrow 3^+}f(x)=\lim_{x\rightarrow 3^-}f(x)=f(3)</math>, <math>f(x)</math> is continuous. |
|- | |- | ||
|'''(b)''' | |'''(b)''' | ||
|} | |} | ||
[[009A_Sample_Final_1|'''<u>Return to Sample Exam</u>''']] | [[009A_Sample_Final_1|'''<u>Return to Sample Exam</u>''']] |
Revision as of 11:05, 15 February 2016
Consider the following piecewise defined function:
a) Show that is continuous at .
b) Using the limit definition of the derivative, and computing the limits from both sides, show that is differentiable at .
Foundations: |
---|
Solution:
(a)
Step 1: |
---|
We first calculate . We have |
|
Step 2: |
---|
Now, we calculate . We have |
|
Step 3: |
---|
Now, we calculate . We have |
. |
Since , is continuous. |
(b)
Step 1: |
---|
Step 2: |
---|
Step 3: |
---|
Final Answer: |
---|
(a) Since , is continuous. |
(b) |