|
|
Line 3: |
Line 3: |
| ::::::<math>f(x)=\sum_{n=1}^{\infty} nx^n</math> | | ::::::<math>f(x)=\sum_{n=1}^{\infty} nx^n</math> |
| | | |
− | ::<span class="exam">a) Find the radius of convergence of the power series.
| + | <span class="exam">a) Find the radius of convergence of the power series. |
− | ::<span class="exam">b) Determine the interval of convergence of the power series.
| + | |
− | ::<span class="exam">c) Obtain an explicit formula for the function <math>f(x)</math>.
| + | <span class="exam">b) Determine the interval of convergence of the power series. |
| + | |
| + | <span class="exam">c) Obtain an explicit formula for the function <math>f(x)</math>. |
| | | |
| {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" |
Revision as of 22:02, 1 February 2016
Let

a) Find the radius of convergence of the power series.
b) Determine the interval of convergence of the power series.
c) Obtain an explicit formula for the function
.
Solution:
(a)
(b)
(c)
Final Answer:
|
(a)
|
(b)
|
(c)
|
Return to Sample Exam