Difference between revisions of "009B Sample Final 1"

From Grad Wiki
Jump to navigation Jump to search
(Created page with "page")
 
Line 1: Line 1:
page
+
'''This is a sample, and is meant to represent the material usually covered in Math 9B for the midterm. An actual test may or may not be similar. Click on the''' '''<span class="biglink" style="color:darkblue;">&nbsp;boxed problem numbers&nbsp;</span> to go to a solution.'''
 +
<div class="noautonum">__TOC__</div>
 +
 
 +
== [[009B_Sample Final 1,_Problem_1|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 1&nbsp;</span></span>]] ==
 +
<span class="exam">Consider the region bounded by the following two functions:
 +
::::::<span class="exam"> <math>y=2(-x^2+9)</math> and <math>y=0</math>
 +
::<span class="exam">a) Using the lower sum with three rectangles having equal width , approximate the area.
 +
::<span class="exam">b) Using the upper sum with three rectangles having equal width, approximate the area.
 +
::<span class="exam">c) Find the actual area of the region.
 +
 
 +
== [[009B_Sample Final 1,_Problem_2|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 2&nbsp;</span>]] ==
 +
<span class="exam"> We would like to evaluate
 +
::::<math>\frac{d}{dx}\bigg(\int_{-1}^{x} \sin(t^2)2tdt\bigg)</math>.
 +
::<span class="exam">a) Compute <math>f(x)=\int_{-1}^{x} \sin(t^2)2tdt</math>.
 +
::<span class="exam">b) Find <math>f'(x)</math>.
 +
::<span class="exam">c) State the fundamental theorem of calculus.
 +
::<span class="exam">d) Use the fundamental theorem of calculus to compute <math>\frac{d}{dx}\bigg(\int_{-1}^{x} \sin(t^2)2tdt\bigg)</math> without first computing the integral.
 +
 
 +
== [[009B_Sample Final 1,_Problem_3|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 5&nbsp;</span>]] ==
 +
<span class="exam"> Let <math style="vertical-align: -5px">f(x)=1-x^2</math>.
 +
 
 +
::<span class="exam">a) Compute the left-hand Riemann sum approximation of <math style="vertical-align: -14px">\int_0^3 f(x)~dx</math> with <math style="vertical-align: 0px">n=3</math> boxes.
 +
::<span class="exam">b) Compute the right-hand Riemann sum approximation of <math style="vertical-align: -14px">\int_0^3 f(x)~dx</math> with <math style="vertical-align: 0px">n=3</math> boxes.
 +
::<span class="exam">c) Express <math style="vertical-align: -14px">\int_0^3 f(x)~dx</math> as a limit of right-hand Riemann sums (as in the definition of the definite integral). Do not evaluate the limit.

Revision as of 16:40, 1 February 2016

This is a sample, and is meant to represent the material usually covered in Math 9B for the midterm. An actual test may or may not be similar. Click on the  boxed problem numbers  to go to a solution.

 Problem 1 

Consider the region bounded by the following two functions:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=2(-x^2+9)} and
a) Using the lower sum with three rectangles having equal width , approximate the area.
b) Using the upper sum with three rectangles having equal width, approximate the area.
c) Find the actual area of the region.

 Problem 2 

We would like to evaluate

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{d}{dx}\bigg(\int_{-1}^{x} \sin(t^2)2tdt\bigg)} .
a) Compute Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)=\int_{-1}^{x} \sin(t^2)2tdt} .
b) Find Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f'(x)} .
c) State the fundamental theorem of calculus.
d) Use the fundamental theorem of calculus to compute Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{d}{dx}\bigg(\int_{-1}^{x} \sin(t^2)2tdt\bigg)} without first computing the integral.

 Problem 5 

Let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)=1-x^2} .

a) Compute the left-hand Riemann sum approximation of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int_0^3 f(x)~dx} with Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n=3} boxes.
b) Compute the right-hand Riemann sum approximation of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int_0^3 f(x)~dx} with Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n=3} boxes.
c) Express Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int_0^3 f(x)~dx} as a limit of right-hand Riemann sums (as in the definition of the definite integral). Do not evaluate the limit.