Difference between revisions of "009B Sample Midterm 2, Problem 2"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
|||
| Line 1: | Line 1: | ||
| − | <span class="exam">This problem has three parts: | + | <span class="exam"> This problem has three parts: |
| − | ::<span class="exam">a) State the | + | ::<span class="exam">a) State the Fundamental Theorem of Calculus. |
| − | ::<span class="exam">b) Compute <math>\frac{d}{dx}\int_0^{\cos (x)}\sin (t)~dt</math> | + | |
| − | ::<span class="exam">c) Evaluate <math>\int_{0}^ | + | ::<span class="exam">b) Compute   <math style="vertical-align: -15px">\frac{d}{dx}\int_0^{\cos (x)}\sin (t)~dt</math>. |
| + | |||
| + | ::<span class="exam">c) Evaluate <math style="vertical-align: -14px">\int_{0}^{\pi/4}\sec^2 x~dx</math>. | ||
| Line 9: | Line 11: | ||
!Foundations: | !Foundations: | ||
|- | |- | ||
| − | |Review the Fundamental Theorem of Calculus | + | |Review the Fundamental Theorem of Calculus. |
|} | |} | ||
| Line 23: | Line 25: | ||
|'''The Fundamental Theorem of Calculus, Part 1''' | |'''The Fundamental Theorem of Calculus, Part 1''' | ||
|- | |- | ||
| − | |Let <math>f</math> be continuous on <math>[a,b]</math> and let <math>F(x)=\int_a^x f(t)~dt</math>. | + | |Let <math style="vertical-align: -4px">f</math> be continuous on <math style="vertical-align: -5px">[a,b]</math> and let <math style="vertical-align: -14px">F(x)=\int_a^x f(t)~dt</math>. |
|- | |- | ||
| − | |Then, <math>F</math> is a differentiable function on <math>(a,b)</math> and <math>F'(x)=f(x)</math>. | + | |Then, <math style="vertical-align: 0px">F</math> is a differentiable function on <math style="vertical-align: -5px">(a,b)</math>, and <math style="vertical-align: -5px">F'(x)=f(x)</math>. |
|} | |} | ||
| Line 33: | Line 35: | ||
|'''The Fundamental Theorem of Calculus, Part 2''' | |'''The Fundamental Theorem of Calculus, Part 2''' | ||
|- | |- | ||
| − | |Let <math>f</math> be continuous on <math>[a,b]</math> and let <math>F</math> be any antiderivative of <math>f</math>. | + | |Let <math style="vertical-align: -4px">f</math> be continuous on <math style="vertical-align: -5px">[a,b]</math> and let <math style="vertical-align: 0px">F</math> be any antiderivative of <math style="vertical-align: -4px">f</math>. |
|- | |- | ||
| − | |Then, <math>\int_a^b f(x)~dx=F(b)-F(a)</math> | + | |Then, <math style="vertical-align: -14px">\int_a^b f(x)~dx=F(b)-F(a)</math>. |
|} | |} | ||
| Line 91: | Line 93: | ||
|'''The Fundamental Theorem of Calculus, Part 1''' | |'''The Fundamental Theorem of Calculus, Part 1''' | ||
|- | |- | ||
| − | |Let <math>f</math> be continuous on <math>[a,b]</math> and let <math>F(x)=\int_a^x f(t)~dt</math>. | + | |Let <math style="vertical-align: -4px">f</math> be continuous on <math style="vertical-align: -5px">[a,b]</math> and let <math style="vertical-align: -14px">F(x)=\int_a^x f(t)~dt</math>. |
|- | |- | ||
| − | |Then, <math>F</math> is a differentiable function on <math>(a,b)</math> and <math>F'(x)=f(x)</math>. | + | |Then, <math style="vertical-align: 0px">F</math> is a differentiable function on <math style="vertical-align: -5px">(a,b)</math>, and <math style="vertical-align: -5px">F'(x)=f(x)</math>. |
|- | |- | ||
|'''The Fundamental Theorem of Calculus, Part 2''' | |'''The Fundamental Theorem of Calculus, Part 2''' | ||
|- | |- | ||
| − | |Let <math>f</math> be continuous on <math>[a,b]</math> and let <math>F</math> be any antiderivative of <math>f</math>. | + | |Let <math style="vertical-align: -4px">f</math> be continuous on <math style="vertical-align: -5px">[a,b]</math> and let <math style="vertical-align: 0px">F</math> be any antiderivative of <math style="vertical-align: -4px">f</math>. |
|- | |- | ||
| − | |Then, <math>\int_a^b f(x)~dx=F(b)-F(a)</math> | + | |Then, <math style="vertical-align: -14px">\int_a^b f(x)~dx=F(b)-F(a)</math>. |
|- | |- | ||
| − | |'''(b)''' <math>\sin(\cos(x))(-\sin(x))</math> | + | |'''(b)''' <math style="vertical-align: -15px">\frac{d}{dx}\int_0^{\cos (x)}\sin (t)~dt\,=\,\sin(\cos(x))\cdot(-\sin(x))</math>. |
|- | |- | ||
| − | |'''(c)''' <math>1</math> | + | |'''(c)''' <math style="vertical-align: -14px">\int_{0}^{\pi/4}\sec^2 x~dx\,=\,1</math>. |
|} | |} | ||
[[009B_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']] | [[009B_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']] | ||
Revision as of 22:50, 2 February 2016
This problem has three parts:
- a) State the Fundamental Theorem of Calculus.
- b) Compute .
- c) Evaluate .
| Foundations: |
|---|
| Review the Fundamental Theorem of Calculus. |
Solution:
(a)
| Step 1: |
|---|
| The Fundamental Theorem of Calculus has two parts. |
| The Fundamental Theorem of Calculus, Part 1 |
| Let be continuous on and let . |
| Then, is a differentiable function on , and . |
| Step 2: |
|---|
| The Fundamental Theorem of Calculus, Part 2 |
| Let be continuous on and let be any antiderivative of . |
| Then, . |
(b)
| Step 1: |
|---|
| Let . The problem is asking us to find . |
| Let and . |
| Then, . |
| Step 2: |
|---|
| If we take the derivative of both sides of the last equation, we get by the Chain Rule. |
| Step 3: |
|---|
| Now, and by the Fundamental Theorem of Calculus, Part 1. |
| Since , we have |
(c)
| Step 1: |
|---|
| Using the Fundamental Theorem of Calculus, Part 2, we have |
| Step 2: |
|---|
| So, we get |
| Final Answer: |
|---|
| (a) |
| The Fundamental Theorem of Calculus, Part 1 |
| Let be continuous on and let . |
| Then, is a differentiable function on , and . |
| The Fundamental Theorem of Calculus, Part 2 |
| Let be continuous on and let be any antiderivative of . |
| Then, . |
| (b) . |
| (c) . |