Difference between revisions of "009B Sample Midterm 2, Problem 2"

From Grad Wiki
Jump to navigation Jump to search
Line 1: Line 1:
<span class="exam">This problem has three parts:
+
<span class="exam"> This problem has three parts:
  
::<span class="exam">a) State the fundamental theorem of calculus.
+
::<span class="exam">a) State the Fundamental Theorem of Calculus.
::<span class="exam">b) Compute <math>\frac{d}{dx}\int_0^{\cos (x)}\sin (t)~dt</math>
+
 
::<span class="exam">c) Evaluate <math>\int_{0}^{\frac{\pi}{4}}\sec^2 x~dx</math>
+
::<span class="exam">b) Compute &thinsp; <math style="vertical-align: -15px">\frac{d}{dx}\int_0^{\cos (x)}\sin (t)~dt</math>.
 +
 
 +
::<span class="exam">c) Evaluate <math style="vertical-align: -14px">\int_{0}^{\pi/4}\sec^2 x~dx</math>.
  
  
Line 9: Line 11:
 
!Foundations: &nbsp;  
 
!Foundations: &nbsp;  
 
|-
 
|-
|Review the Fundamental Theorem of Calculus
+
|Review the Fundamental Theorem of Calculus.
 
|}
 
|}
  
Line 23: Line 25:
 
|'''The Fundamental Theorem of Calculus, Part 1'''
 
|'''The Fundamental Theorem of Calculus, Part 1'''
 
|-
 
|-
|Let <math>f</math> be continuous on <math>[a,b]</math> and let <math>F(x)=\int_a^x f(t)~dt</math>.
+
|Let <math style="vertical-align: -4px">f</math> be continuous on <math style="vertical-align: -5px">[a,b]</math> and let <math style="vertical-align: -14px">F(x)=\int_a^x f(t)~dt</math>.
 
|-
 
|-
|Then, <math>F</math> is a differentiable function on <math>(a,b)</math> and <math>F'(x)=f(x)</math>.
+
|Then, <math style="vertical-align: 0px">F</math> is a differentiable function on <math style="vertical-align: -5px">(a,b)</math>, and <math style="vertical-align: -5px">F'(x)=f(x)</math>.
 
|}
 
|}
  
Line 33: Line 35:
 
|'''The Fundamental Theorem of Calculus, Part 2'''
 
|'''The Fundamental Theorem of Calculus, Part 2'''
 
|-
 
|-
|Let <math>f</math> be continuous on <math>[a,b]</math> and let <math>F</math> be any antiderivative of <math>f</math>.
+
|Let <math style="vertical-align: -4px">f</math> be continuous on <math style="vertical-align: -5px">[a,b]</math> and let <math style="vertical-align: 0px">F</math> be any antiderivative of <math style="vertical-align: -4px">f</math>.
 
|-
 
|-
|Then, <math>\int_a^b f(x)~dx=F(b)-F(a)</math>
+
|Then, <math style="vertical-align: -14px">\int_a^b f(x)~dx=F(b)-F(a)</math>.
 
|}
 
|}
  
Line 91: Line 93:
 
|'''The Fundamental Theorem of Calculus, Part 1'''
 
|'''The Fundamental Theorem of Calculus, Part 1'''
 
|-
 
|-
|Let <math>f</math> be continuous on <math>[a,b]</math> and let <math>F(x)=\int_a^x f(t)~dt</math>.
+
|Let <math style="vertical-align: -4px">f</math> be continuous on <math style="vertical-align: -5px">[a,b]</math> and let <math style="vertical-align: -14px">F(x)=\int_a^x f(t)~dt</math>.
 
|-
 
|-
|Then, <math>F</math> is a differentiable function on <math>(a,b)</math> and <math>F'(x)=f(x)</math>.
+
|Then, <math style="vertical-align: 0px">F</math> is a differentiable function on <math style="vertical-align: -5px">(a,b)</math>, and <math style="vertical-align: -5px">F'(x)=f(x)</math>.
 
|-
 
|-
 
|'''The Fundamental Theorem of Calculus, Part 2'''
 
|'''The Fundamental Theorem of Calculus, Part 2'''
 
|-
 
|-
|Let <math>f</math> be continuous on <math>[a,b]</math> and let <math>F</math> be any antiderivative of <math>f</math>.
+
|Let <math style="vertical-align: -4px">f</math> be continuous on <math style="vertical-align: -5px">[a,b]</math> and let <math style="vertical-align: 0px">F</math> be any antiderivative of <math style="vertical-align: -4px">f</math>.
 
|-
 
|-
|Then, <math>\int_a^b f(x)~dx=F(b)-F(a)</math>
+
|Then, <math style="vertical-align: -14px">\int_a^b f(x)~dx=F(b)-F(a)</math>.
 
|-
 
|-
|'''(b)''' <math>\sin(\cos(x))(-\sin(x))</math>
+
|'''(b)''' &nbsp; <math style="vertical-align: -15px">\frac{d}{dx}\int_0^{\cos (x)}\sin (t)~dt\,=\,\sin(\cos(x))\cdot(-\sin(x))</math>.
 
|-
 
|-
|'''(c)''' <math>1</math>
+
|'''(c)''' <math style="vertical-align: -14px">\int_{0}^{\pi/4}\sec^2 x~dx\,=\,1</math>.
 
|}
 
|}
 
[[009B_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']]
 
[[009B_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']]

Revision as of 22:50, 2 February 2016

This problem has three parts:

a) State the Fundamental Theorem of Calculus.
b) Compute   .
c) Evaluate .


Foundations:  
Review the Fundamental Theorem of Calculus.

Solution:

(a)

Step 1:  
The Fundamental Theorem of Calculus has two parts.
The Fundamental Theorem of Calculus, Part 1
Let be continuous on and let .
Then, is a differentiable function on , and .
Step 2:  
The Fundamental Theorem of Calculus, Part 2
Let be continuous on and let be any antiderivative of .
Then, .

(b)

Step 1:  
Let . The problem is asking us to find .
Let and .
Then, .
Step 2:  
If we take the derivative of both sides of the last equation, we get by the Chain Rule.
Step 3:  
Now, and by the Fundamental Theorem of Calculus, Part 1.
Since , we have

(c)

Step 1:  
Using the Fundamental Theorem of Calculus, Part 2, we have
Step 2:  
So, we get
Final Answer:  
(a)
The Fundamental Theorem of Calculus, Part 1
Let be continuous on and let .
Then, is a differentiable function on , and .
The Fundamental Theorem of Calculus, Part 2
Let be continuous on and let be any antiderivative of .
Then, .
(b)   .
(c) .

Return to Sample Exam