Difference between revisions of "009B Sample Midterm 2, Problem 3"

From Grad Wiki
Jump to navigation Jump to search
Line 1: Line 1:
<span class="exam">Evaluate
+
<span class="exam"> Evaluate
  
::<span class="exam">a) <math>\int_1^2\bigg(2t+\frac{3}{t^2}\bigg)\bigg(4t^2-\frac{5}{t}\bigg)~dt</math>  
+
::<span class="exam">a) <math style="vertical-align: -14px">\int_1^2\bigg(2t+\frac{3}{t^2}\bigg)\bigg(4t^2-\frac{5}{t}\bigg)~dt</math>  
::<span class="exam">b) <math>\int_0^2 (x^3+x)\sqrt{x^4+2x^2+4}~dx</math>
+
 
 +
::<span class="exam">b) <math style="vertical-align: -14px">\int_0^2 (x^3+x)\sqrt{x^4+2x^2+4}~dx</math>
  
  
Line 8: Line 9:
 
!Foundations: &nbsp;  
 
!Foundations: &nbsp;  
 
|-
 
|-
|Review <math>u</math>-substitution   
+
|Review <math style="vertical-align: 0px">u</math>-substitution   
 
|}
 
|}
  
 
'''Solution:'''
 
'''Solution:'''
 
+
== Temp 1 ==
 
'''(a)'''
 
'''(a)'''
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
Line 33: Line 34:
 
|<math>\int_1^2\bigg(2t+\frac{3}{t^2}\bigg)\bigg(4t^2-\frac{5}{t}\bigg)~dt=2(2)^4+2(2)+\frac{15}{2(2)^2}-\bigg(2+2+\frac{15}{2}\bigg)=36+\frac{15}{8}-4-\frac{15}{2}=\frac{211}{8}</math>
 
|<math>\int_1^2\bigg(2t+\frac{3}{t^2}\bigg)\bigg(4t^2-\frac{5}{t}\bigg)~dt=2(2)^4+2(2)+\frac{15}{2(2)^2}-\bigg(2+2+\frac{15}{2}\bigg)=36+\frac{15}{8}-4-\frac{15}{2}=\frac{211}{8}</math>
 
|}
 
|}
 
+
== Temp 2 ==
 
'''(b)'''
 
'''(b)'''
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
Line 58: Line 59:
 
|<math>\int_0^2 (x^3+x)\sqrt{x^4+2x^2+4}~dx=\frac{28\sqrt{7}-4}{3}</math>
 
|<math>\int_0^2 (x^3+x)\sqrt{x^4+2x^2+4}~dx=\frac{28\sqrt{7}-4}{3}</math>
 
|}
 
|}
 
+
== Temp 3 ==
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  

Revision as of 23:42, 2 February 2016

Evaluate

a)
b)


Foundations:  
Review -substitution

Solution:

Temp 1

(a)

Step 1:  
We multiply the product inside the integral to get
Step 2:  
We integrate to get
.
We now evaluate to get

Temp 2

(b)

Step 1:  
We use -substitution. Let . Then, and . Also, we need to change the bounds of integration.
Plugging in our values into the equation , we get and .
Therefore, the integral becomes
Step 2:  
We now have:
So, we have

Temp 3

Final Answer:  
(a)
(b)

Return to Sample Exam