Difference between revisions of "009A Sample Final A"

From Grad Wiki
Jump to navigation Jump to search
(Created page with "1. Find the following limits: (a)   <math> \lim_{x\rightarrow0}\frac{\tan(3x)}{x^{3}}. </math> <br><br> (b)   <math>\lim_{x\rightarrow-\infty}\frac{\sqrt{x^{6}+6x^...")
 
Line 1: Line 1:
1. Find the following limits:
+
'''This is a sample final, and is meant to represent the material usually covered in Math 9A.  Moreover, it contains enough questions to represent a three hour test.  An actual test may or may not be similar'''.  
  
(a) &nbsp; <math>
+
 
\lim_{x\rightarrow0}\frac{\tan(3x)}{x^{3}}.
+
== 1. Find the following limits: ==
</math>
+
 
 +
<span style="font-size:130%"><font face=Times Roman>(a)</font face=Times Roman> </span> &nbsp; <math>\lim_{x\rightarrow0}\frac{\tan(3x)}{x^{3}}.</math>
 +
<br><br>
 +
<span style="font-size:130%"><font face=Times Roman>(b)</font face=Times Roman> </span> &nbsp; <math>\lim_{x\rightarrow-\infty}\frac{\sqrt{x^{6}+6x^{2}+2}}{x^{3}+x-1}.</math>
 
<br><br>
 
<br><br>
(b) &nbsp; <math>\lim_{x\rightarrow-\infty}\frac{\sqrt{x^{6}+6x^{2}+2}}{x^{3}+x-1}.</math>
+
<span style="font-size:130%"><font face=Times Roman>(c)</font face=Times Roman> </span> &nbsp; <math>\lim_{x\rightarrow3}\frac{x-3}{\sqrt{x+1}-2}.</math>
 
<br><br>
 
<br><br>
(c) &nbsp; <math>\lim_{x\rightarrow3}\frac{x-3}{\sqrt{x+1}-2}.</math>
+
<span style="font-size:130%"><font face=Times Roman>(d)</font face=Times Roman> </span> &nbsp; <math>\lim_{x\rightarrow3}\frac{x-1}{\sqrt{x+1}-1}.</math>
 
<br><br>
 
<br><br>
(d) &nbsp; <math>\lim_{x\rightarrow3}\frac{x-1}{\sqrt{x+1}-1}.</math>
+
<span style="font-size:130%"><font face=Times Roman>(e)</font face=Times Roman> </span> &nbsp; <math>\lim_{x\rightarrow\infty}\frac{5x^{2}-2x+3}{1-3x^{2}}.</math>
 +
 
 +
 
 +
== 2. Find the derivatives of the following functions: ==
 +
 
 +
<span style="font-size:130%"><font face=Times Roman>(a)</font face=Times Roman> </span>  &nbsp; <math>f(x)=\frac{3x^{2}-5}{x^{3}-9}.</math>
 
<br><br>
 
<br><br>
(e) &nbsp; <math>\lim_{x\rightarrow\infty}\frac{5x^{2}-2x+3}{1-3x^{2}}.</math>
+
<span style="font-size:130%"><font face=Times Roman>(b)</font face=Times Roman> </span> &nbsp; <math>g(x)=\pi+2\cos(\sqrt{x-2}).</math>
 +
<br><br>
 +
 
 +
<span style="font-size:130%"><font face=Times Roman>(c)</font face=Times Roman> </span> &nbsp; <math>h(x)=4x\sin(x)+e(x^{2}+2)^{2}.</math>
 +
<br><br>
 +
 
 +
== 3. Consider the following function: ==
 +
 
 +
<math>f(x)=\begin{cases}
 +
\sqrt{x}, & \quad\mbox{if \ensuremath{x\geq1}}\\
 +
4x^{2}+C, & \quad\mbox{if }x<1.
 +
\end{cases}</math>

Revision as of 21:21, 22 March 2015

This is a sample final, and is meant to represent the material usually covered in Math 9A. Moreover, it contains enough questions to represent a three hour test. An actual test may or may not be similar.


1. Find the following limits:

(a)  

(b)  

(c)  

(d)  

(e)  


2. Find the derivatives of the following functions:

(a)  

(b)  

(c)  

3. Consider the following function:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)=\begin{cases} \sqrt{x}, & \quad\mbox{if \ensuremath{x\geq1}}\\ 4x^{2}+C, & \quad\mbox{if }x<1. \end{cases}}