Difference between revisions of "009B Sample Midterm 1, Problem 2"

From Grad Wiki
Jump to navigation Jump to search
Line 1: Line 1:
<span class="exam">Find the average value of the function on the given interval.
+
<span class="exam"> Otis Taylor plots the price per share of a stock that he owns as a function of time
  
::<math>f(x)=2x^3(1+x^2)^4,~~~[0,2]</math>
+
<span class="exam">and finds that it can be approximated by the function
 +
 
 +
::::::<math>s(t)=t(25-5t)+18</math>
 +
 
 +
<span class="exam">where <math>t</math> is the time (in years) since the stock was purchased.
 +
 
 +
<span class="exam">Find the average price of the stock over the first five years.
  
  
Line 16: Line 22:
 
|Using the formula given in Foundations, we have:
 
|Using the formula given in Foundations, we have:
 
|-
 
|-
| &nbsp; &nbsp;<math style="vertical-align: 0px">f_{\text{avg}}=\frac{1}{2-0}\int_0^2 2x^3(1+x^2)^4~dx=\int_0^2 x^3(1+x^2)^4~dx.</math>  
+
| &nbsp; &nbsp;<math style="vertical-align: 0px">f_{\text{avg}}=</math>  
 
|}
 
|}
  
Line 22: Line 28:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|Now, we use <math>u</math>-substitution. Let <math style="vertical-align: -2px">u=1+x^2</math>. Then, <math style="vertical-align: 0px">du=2x dx</math> and <math style="vertical-align: -13px">\frac{du}{2}=xdx</math>. Also, <math style="vertical-align: 0px">x^2=u-1</math>.
+
|
 
|-
 
|-
|We need to change the bounds on the integral. We have <math style="vertical-align: -4px">u_1=1+0^2=1</math> and <math style="vertical-align: -3px">u_2=1+2^2=5</math>.
+
|
 
|-
 
|-
|So, the integral becomes <math style="vertical-align: -19px">f_{\text{avg}}=\int_0^2 x\cdot x^2 (1+x^2)^4~dx=\frac{1}{2}\int_1^5(u-1)u^4~du=\frac{1}{2}\int_1^5(u^5-u^4)~du</math>.
+
|
 
|}
 
|}
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 3: &nbsp;
 
!Step 3: &nbsp;
|-
 
|We integrate to get
 
|-
 
| &nbsp; &nbsp; <math>f_{\text{avg}}=\left.\frac{u^6}{12}-\frac{u^5}{10}\right|_{1}^5=\left.u^5\bigg(\frac{u}{12}-\frac{1}{10}\bigg)\right|_{1}^5.</math>
 
|-
 
|
 
 
|-
 
|-
 
|
 
|
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 4: &nbsp;
 
|-
 
|We evaluate to get
 
 
|-
 
|-
| &nbsp; &nbsp; <math style="vertical-align: -20px">f_{\text{avg}}=5^5\bigg(\frac{5}{12}-\frac{1}{10}\bigg)-1^5\bigg(\frac{1}{12}-\frac{1}{10}\bigg)=3125\bigg(\frac{19}{60}\bigg)-\frac{-1}{60}=\frac{59376}{60}=\frac{4948}{5}</math>.
+
|  
 
|-
 
|-
 
|
 
|
Line 56: Line 50:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
| &nbsp; &nbsp; <math>\frac{4948}{5}</math>
+
| &nbsp; &nbsp; <math></math>
 
|-
 
|-
 
|  
 
|  
 
|}
 
|}
 
[[009B_Sample_Midterm_1|'''<u>Return to Sample Exam</u>''']]
 
[[009B_Sample_Midterm_1|'''<u>Return to Sample Exam</u>''']]

Revision as of 10:14, 5 February 2017

Otis Taylor plots the price per share of a stock that he owns as a function of time

and finds that it can be approximated by the function

where is the time (in years) since the stock was purchased.

Find the average price of the stock over the first five years.


Foundations:  
The average value of a function on an interval is given by .

Solution:

Step 1:  
Using the formula given in Foundations, we have:
   
Step 2:  
Step 3:  
Final Answer:  
   

Return to Sample Exam