Difference between revisions of "009B Sample Midterm 1, Problem 4"

From Grad Wiki
Jump to navigation Jump to search
Line 28: Line 28:
 
!Step 2:  
 
!Step 2:  
 
|-
 
|-
|Now, we use <math style="vertical-align: 0px">u</math> substitution. Let <math style="vertical-align: -5px">u=\cos(x)</math>. Then, <math style="vertical-align: -5px">du=-\sin(x)dx</math>. Therefore,  
+
|Now, we use <math style="vertical-align: 0px">u</math>-substitution. Let <math style="vertical-align: -5px">u=\cos(x)</math>. Then, <math style="vertical-align: -5px">du=-\sin(x)dx</math>. Therefore,  
 
|-
 
|-
 
| &nbsp;&nbsp; <math style="vertical-align: -14px">\int\sin^3x\cos^2x~dx=\int -(u^2-u^4)~du=\frac{-u^3}{3}+\frac{u^5}{5}+C=\frac{\cos^5x}{5}-\frac{\cos^3x}{3}+C</math>.
 
| &nbsp;&nbsp; <math style="vertical-align: -14px">\int\sin^3x\cos^2x~dx=\int -(u^2-u^4)~du=\frac{-u^3}{3}+\frac{u^5}{5}+C=\frac{\cos^5x}{5}-\frac{\cos^3x}{3}+C</math>.

Revision as of 14:19, 1 February 2016

Evaluate the integral:


Foundations:  
Review -substitution, and
Trig identities.

Solution:

Step 1:  
First, we write .
Using the identity , we get . If we use this identity, we have
    .
Step 2:  
Now, we use -substitution. Let . Then, . Therefore,
   .
Final Answer:  
  

Return to Sample Exam