Difference between revisions of "009B Sample Midterm 1, Problem 5"

From Grad Wiki
Jump to navigation Jump to search
Line 1: Line 1:
 
<span class="exam">Let <math>f(x)=1-x^2</math>.
 
<span class="exam">Let <math>f(x)=1-x^2</math>.
  
::<span class="exam">a) Compute the left-hand Riemann sum approximation of <math>\int_0^3 f(x)~dx</math> with <math>n=3</math> boxes.
+
::<span class="exam">a) Compute the left-hand Riemann sum approximation of <math style="vertical-align: -14px">\int_0^3 f(x)~dx</math> with <math style="vertical-align: 0px">n=3</math> boxes.
::<span class="exam">b) Compute the right-hand Riemann sum approximation of <math>\int_0^3 f(x)~dx</math> with <math>n=3</math> boxes.
+
::<span class="exam">b) Compute the right-hand Riemann sum approximation of <math style="vertical-align: -14px">\int_0^3 f(x)~dx</math> with <math style="vertical-align: 0px">n=3</math> boxes.
::<span class="exam">c) Express <math>\int_0^3 f(x)~dx</math> as a limit of right-hand Riemann sums (as in the definition of the definite integral). Do not evaluate the limit.
+
::<span class="exam">c) Express <math style="vertical-align: -14px">\int_0^3 f(x)~dx</math> as a limit of right-hand Riemann sums (as in the definition of the definite integral). Do not evaluate the limit.
  
  
Line 18: Line 18:
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|Since our interval is <math>[0,3]</math> and we are using 3 rectangles, each rectangle has width 1. So, the left-hand Riemann sum is  
+
|Since our interval is <math style="vertical-align: -5px">[0,3]</math> and we are using 3 rectangles, each rectangle has width 1. So, the left-hand Riemann sum is  
 
|-
 
|-
|<math>1(f(0)+f(1)+f(2))</math>.   
+
| &nbsp;&nbsp; <math style="vertical-align: 0px">1(f(0)+f(1)+f(2))</math>.   
 
|-
 
|-
 
|
 
|
Line 30: Line 30:
 
|Thus, the left-hand Riemann sum is  
 
|Thus, the left-hand Riemann sum is  
 
|-
 
|-
|<math>1(f(0)+f(1)+f(2))=1+0+-3=-2</math>.   
+
| &nbsp;&nbsp; <math style="vertical-align: -4px">1(f(0)+f(1)+f(2))=1+0+-3=-2</math>.   
 
|}
 
|}
  
Line 37: Line 37:
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|Since our interval is <math>[0,3]</math> and we are using 3 rectangles, each rectangle has width 1. So, the right-hand Riemann sum is
+
|Since our interval is <math style="vertical-align: -5px">[0,3]</math> and we are using 3 rectangles, each rectangle has width 1. So, the right-hand Riemann sum is
 
|-
 
|-
|<math>1(f(1)+f(2)+f(3))</math>.   
+
| &nbsp;&nbsp; <math style="vertical-align: -5px">1(f(1)+f(2)+f(3))</math>.   
 
|-
 
|-
 
|
 
|
Line 49: Line 49:
 
|Thus, the right-hand Riemann sum is  
 
|Thus, the right-hand Riemann sum is  
 
|-
 
|-
|<math>1(f(1)+f(2)+f(3))=0+-3+-8=-11</math>.   
+
| &nbsp;&nbsp; <math style="vertical-align: -5px">1(f(1)+f(2)+f(3))=0+-3+-8=-11</math>.   
 
|}
 
|}
  
Line 56: Line 56:
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|Let <math>n</math> be the number of rectangles used in the right-hand Riemann sum for <math>f(x)=1-x^2</math>.
+
|Let <math style="vertical-align: 0px">n</math> be the number of rectangles used in the right-hand Riemann sum for <math style="vertical-align: -5px">f(x)=1-x^2</math>.
 
|-
 
|-
|The width of each rectangle is <math>\Delta x=\frac{3-0}{n}=\frac{3}{n}</math>.
+
|The width of each rectangle is <math style="vertical-align: -13px">\Delta x=\frac{3-0}{n}=\frac{3}{n}</math>.
 
|-
 
|-
 
|
 
|
Line 70: Line 70:
 
|So, the right-hand Riemann sum is  
 
|So, the right-hand Riemann sum is  
 
|-
 
|-
|<math>\Delta x \bigg(f\bigg(\frac{3}{n}\bigg)+f\bigg(2\frac{3}{n}\bigg)+f\bigg(3\frac{3}{n}\bigg)+\ldots +f(3)\bigg)</math>.
+
| &nbsp;&nbsp; <math style="vertical-align: -14px">\Delta x \bigg(f\bigg(1\cdot \frac{3}{n}\bigg)+f\bigg(2\cdot \frac{3}{n}\bigg)+f\bigg(3\cdot \frac{3}{n}\bigg)+\ldots +f(3)\bigg)</math>.
 
|-
 
|-
|Now, we let <math>n</math> go to infinity to get a limit.   
+
|Finally, we let <math style="vertical-align: 0px">n</math> go to infinity to get a limit.   
 
|-
 
|-
|So, the area of <math>\int_0^3 f(x)~dx</math> is equal to <math>\lim_{n\to\infty} \frac{3}{n}\sum_{i=1}^{n}f\bigg(i\frac{3}{n}\bigg)</math>.
+
|Thus, the area of <math style="vertical-align: -14px">\int_0^3 f(x)~dx</math> is equal to <math style="vertical-align: -21px">\lim_{n\to\infty} \frac{3}{n}\sum_{i=1}^{n}f\bigg(i\frac{3}{n}\bigg)</math>.
 
|}
 
|}
  
Line 80: Line 80:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|'''(a)''' <math>-2</math>  
+
|'''(a)''' &nbsp;<math style="vertical-align: -2px">-2</math>  
 
|-
 
|-
|'''(b)''' <math>-11</math>
+
|'''(b)''' &nbsp;<math style="vertical-align: -2px">-11</math>
 
|-
 
|-
|'''(c)''' <math>\lim_{n\to\infty} \frac{3}{n}\sum_{i=1}^{n}f\bigg(i\frac{3}{n}\bigg)</math>
+
|'''(c)''' &nbsp;<math style="vertical-align: -22px">\lim_{n\to\infty} \frac{3}{n}\sum_{i=1}^{n}f\bigg(i\frac{3}{n}\bigg)</math>
 
|}
 
|}
 
[[009B_Sample_Midterm_1|'''<u>Return to Sample Exam</u>''']]
 
[[009B_Sample_Midterm_1|'''<u>Return to Sample Exam</u>''']]

Revision as of 23:23, 31 January 2016

Let .

a) Compute the left-hand Riemann sum approximation of with boxes.
b) Compute the right-hand Riemann sum approximation of with boxes.
c) Express as a limit of right-hand Riemann sums (as in the definition of the definite integral). Do not evaluate the limit.


Foundations:  
Link to Riemann sums page

Solution:

(a)

Step 1:  
Since our interval is and we are using 3 rectangles, each rectangle has width 1. So, the left-hand Riemann sum is
   .
Step 2:  
Thus, the left-hand Riemann sum is
   .

(b)

Step 1:  
Since our interval is and we are using 3 rectangles, each rectangle has width 1. So, the right-hand Riemann sum is
   .
Step 2:  
Thus, the right-hand Riemann sum is
   .

(c)

Step 1:  
Let be the number of rectangles used in the right-hand Riemann sum for .
The width of each rectangle is .
Step 2:  
So, the right-hand Riemann sum is
   .
Finally, we let go to infinity to get a limit.
Thus, the area of is equal to .
Final Answer:  
(a)  
(b)  
(c)  

Return to Sample Exam