Difference between revisions of "009B Sample Midterm 3, Problem 1"

From Grad Wiki
Jump to navigation Jump to search
Line 12: Line 12:
 
!Step 1:    
 
!Step 1:    
 
|-
 
|-
|
+
|Let <math>f(x)=\sin(x)</math>. Each interval has length <math>\frac{\pi}{4}</math>. So, the right-endpoint Riemann sum of <math>f(x)</math> on the interval <math>[0,\pi]</math> is
 
|-
 
|-
|  
+
|<math>\frac{\pi}{4}\bigg(f\bigg(\frac{\pi}{4}\bigg)+f\bigg(\frac{\pi}{2}\bigg)+f\bigg(\frac{3\pi}{4}\bigg)+f(\pi)\bigg)</math>.
|-
 
|
 
|-
 
|
 
 
|}
 
|}
  
Line 24: Line 20:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|
+
|Thus, the right-endpoint Riemann sum is
|-
 
|
 
|-
 
|
 
 
|-
 
|-
|
+
|<math>\frac{\pi}{4}\bigg(\sin\bigg(\frac{\pi}{4}\bigg)+\sin\bigg(\frac{\pi}{2}\bigg)+\sin\bigg(\frac{3\pi}{4}\bigg)+\sin(\pi)\bigg)=\frac{\pi}{4}\bigg(\frac{\sqrt{2}}{2}+1+\frac{\sqrt{2}}{2}+0\bigg)=\frac{\pi}{4}(\sqrt{2}+1)</math>
 
|}
 
|}
  
Line 36: Line 28:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|
+
|<math>\frac{\pi}{4}(\sqrt{2}+1)</math>
 
|-
 
|-
 
|  
 
|  
 
|}
 
|}
 
[[009B_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']]
 
[[009B_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']]

Revision as of 14:08, 31 January 2016

Divide the interval into four subintervals of equal length and compute the right-endpoint Riemann sum of


Foundations:  
Link to Riemann sums page

Solution:

Step 1:  
Let . Each interval has length . So, the right-endpoint Riemann sum of on the interval is
.
Step 2:  
Thus, the right-endpoint Riemann sum is
Final Answer:  

Return to Sample Exam