Difference between revisions of "009B Sample Midterm 3, Problem 3"

From Grad Wiki
Jump to navigation Jump to search
Line 36: Line 36:
 
!Step 1:    
 
!Step 1:    
 
|-
 
|-
|
+
|Again, we proceed using u substitution. Let <math>u=\cos(x)</math>. Then, <math>du=-\sin(x)dx</math>.
 
|-
 
|-
|
+
|Since this is a definite integral, we need to change the bounds of integration.
 
|-
 
|-
|
+
|We have <math>u_1=\cos\bigg(-\frac{\pi}{4}\bigg)=\frac{\sqrt{2}}{2}</math> and <math>u_2=\cos\bigg(\frac{\pi}{4}\bigg)=\frac{\sqrt{2}}{2}</math>.
|-
 
|
 
 
|}
 
|}
  
Line 48: Line 46:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|
+
|So, we get
|-
 
|
 
|-
 
|
 
 
|-
 
|-
|
+
|<math>\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \cos^2(x)\sin (x)dx=\int_{\frac{\sqrt{2}}{2}}^{\frac{\sqrt{2}}{2}} -u^2=\left.\frac{-u^3}{3}\right|_{\frac{\sqrt{2}}{2}}^{\frac{\sqrt{2}}{2}}=0</math>
 
|}
 
|}
  
Line 62: Line 56:
 
|'''(a)''' <math>\frac{-1}{3}\cos(x^3)+C</math>
 
|'''(a)''' <math>\frac{-1}{3}\cos(x^3)+C</math>
 
|-
 
|-
|'''(b)'''  
+
|'''(b)''' <math>0</math>
 
|}
 
|}
 
[[009B_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']]
 
[[009B_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']]

Revision as of 13:46, 31 January 2016

Compute the following integrals:

a)
b)


Foundations:  
u substitution

Solution:

(a)

Step 1:  
We proceed using u substitution. Let . Then, .
Therefore, we have
Step 2:  
We integrate to get

(b)

Step 1:  
Again, we proceed using u substitution. Let . Then, .
Since this is a definite integral, we need to change the bounds of integration.
We have and .
Step 2:  
So, we get
Final Answer:  
(a)
(b)

Return to Sample Exam