Difference between revisions of "009B Sample Midterm 3, Problem 5"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 20: | Line 20: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
− | |We start by writing <math>\int \tan^ | + | |We start by writing <math>\int \tan^3x~dx=\int \tan^2x\tan x ~dx</math>. |
|- | |- | ||
− | |Since <math>\tan^2x=\sec^2x-1</math>, we have <math>\int \tan^ | + | |Since <math>\tan^2x=\sec^2x-1</math>, we have <math>\int \tan^3x~dx=\int (\sec^2x-1)\tan x ~dx=\int \sec^2\tan x~dx-\int \tan x~dx</math>. |
|} | |} | ||
Line 30: | Line 30: | ||
|Now, we need to use u substitution for the first integral. Let <math>u=\tan(x)</math>. Then, <math>du=\sec^2xdx</math>. So, we have | |Now, we need to use u substitution for the first integral. Let <math>u=\tan(x)</math>. Then, <math>du=\sec^2xdx</math>. So, we have | ||
|- | |- | ||
− | |<math>\int \tan^ | + | |<math>\int \tan^3x~dx=\int u~du-\int \tan x~dx=\frac{u^2}{2}-\int \tan x~dx=\frac{\tan^2x}{2}-\int \tan x~dx</math>. |
|} | |} | ||
Line 36: | Line 36: | ||
!Step 3: | !Step 3: | ||
|- | |- | ||
− | |For the remaining integral, we need to use u substitution. First, we write <math>\int \tan^ | + | |For the remaining integral, we also need to use u substitution. First, we write <math>\int \tan^3x~dx=\frac{\tan^2x}{2}-\int \frac{\sin x}{\cos x}~dx</math>. |
|- | |- | ||
|Now, we let <math>u=\cos x</math>. Then, <math>du=-\sin xdx</math>. So, we get | |Now, we let <math>u=\cos x</math>. Then, <math>du=-\sin xdx</math>. So, we get | ||
|- | |- | ||
− | |<math>\int \tan^ | + | |<math>\int \tan^3x~dx=\frac{\tan^2x}{2}+\int \frac{1}{u}~dx=\frac{\tan^2x}{2}+\ln |u|+C=\frac{\tan^2x}{2}+\ln |\cos x|+C</math>. |
|} | |} | ||
'''(b)''' | '''(b)''' | ||
Line 48: | Line 48: | ||
|One of the double angle formulas is <math>\cos(2x)=1-2\sin^2(x)</math>. Solving for <math>\sin^2(x)</math>, we get <math>\sin^2(x)=\frac{1-\cos(2x)}{2}</math>. | |One of the double angle formulas is <math>\cos(2x)=1-2\sin^2(x)</math>. Solving for <math>\sin^2(x)</math>, we get <math>\sin^2(x)=\frac{1-\cos(2x)}{2}</math>. | ||
|- | |- | ||
− | |Plugging this identity into our integral, we get <math>\int_0^\pi \sin^2x~dx=\int_0^\pi \frac{1-\cos(2x)}{2}dx=\int_0^\pi \frac{1}{2}dx-\int_0^\pi \frac{\cos(2x)}{2}dx</math>. | + | |Plugging this identity into our integral, we get <math>\int_0^\pi \sin^2x~dx=\int_0^\pi \frac{1-\cos(2x)}{2}~dx=\int_0^\pi \frac{1}{2}~dx-\int_0^\pi \frac{\cos(2x)}{2}~dx</math>. |
|} | |} | ||
Line 56: | Line 56: | ||
|If we integrate the first integral, we get | |If we integrate the first integral, we get | ||
|- | |- | ||
− | |<math>\int_0^\pi \sin^2x~dx=\left.\frac{x}{2}\right|_{0}^\pi-\int_0^\pi \frac{\cos(2x)}{2}dx=\frac{\pi}{2}-\int_0^\pi \frac{\cos(2x)}{2}dx</math>. | + | |<math>\int_0^\pi \sin^2x~dx=\left.\frac{x}{2}\right|_{0}^\pi-\int_0^\pi \frac{\cos(2x)}{2}~dx=\frac{\pi}{2}-\int_0^\pi \frac{\cos(2x)}{2}~dx</math>. |
|- | |- | ||
| | | | ||
Line 66: | Line 66: | ||
|For the remaining integral, we need to use u substitution. Let <math>u=2x</math>. Then, <math>du=2dx</math>. Also, since this is a definite integral | |For the remaining integral, we need to use u substitution. Let <math>u=2x</math>. Then, <math>du=2dx</math>. Also, since this is a definite integral | ||
|- | |- | ||
− | |and we are using u | + | |and we are using u substitution, we need to change the bounds of integration. We have <math>u_1=2(0)=0</math> and <math>u_2=2(\pi)=2\pi</math>. |
|- | |- | ||
|So, the integral becomes | |So, the integral becomes | ||
|- | |- | ||
− | |<math>\int_0^\pi \sin^2x~dx=\frac{\pi}{2}-\int_0^{2\pi} \frac{\cos(u)}{4}du=\frac{\pi}{2}-\left.\frac{\sin(u)}{4}\right|_0^{2\pi}=\frac{\pi}{2}-\bigg(\frac{\sin(2\pi)}{4}-\frac{\sin(0)}{4}\bigg)=\frac{\pi}{2}</math> | + | |<math>\int_0^\pi \sin^2x~dx=\frac{\pi}{2}-\int_0^{2\pi} \frac{\cos(u)}{4}~du=\frac{\pi}{2}-\left.\frac{\sin(u)}{4}\right|_0^{2\pi}=\frac{\pi}{2}-\bigg(\frac{\sin(2\pi)}{4}-\frac{\sin(0)}{4}\bigg)=\frac{\pi}{2}</math> |
|} | |} | ||
Revision as of 15:37, 31 January 2016
Evaluate the indefinite and definite integrals.
- a)
- b)
Foundations: |
---|
Review u substitution |
Trig identities |
Solution:
(a)
Step 1: |
---|
We start by writing . |
Since , we have . |
Step 2: |
---|
Now, we need to use u substitution for the first integral. Let . Then, . So, we have |
. |
Step 3: |
---|
For the remaining integral, we also need to use u substitution. First, we write . |
Now, we let . Then, . So, we get |
. |
(b)
Step 1: |
---|
One of the double angle formulas is . Solving for , we get . |
Plugging this identity into our integral, we get . |
Step 2: |
---|
If we integrate the first integral, we get |
. |
Step 3: |
---|
For the remaining integral, we need to use u substitution. Let . Then, . Also, since this is a definite integral |
and we are using u substitution, we need to change the bounds of integration. We have and . |
So, the integral becomes |
Final Answer: |
---|
(a) |
(b) |