Difference between revisions of "009B Sample Midterm 3, Problem 5"

From Grad Wiki
Jump to navigation Jump to search
Line 46: Line 46:
 
!Step 1:    
 
!Step 1:    
 
|-
 
|-
|
+
|One of the double angle formulas is <math>\cos(2x)=1-2\sin^2(x)</math>. Solving for <math>\sin^2(x)</math>, we get <math>\sin^2(x)=\frac{1-\cos(2x)}{2}</math>.
 +
|-
 +
|Plugging this identity into our integral, we get <math>\int_0^\pi \sin^2x~dx=\int_0^\pi \frac{1-\cos(2x)}{2}dx=\int_0^\pi \frac{1}{2}dx-\int_0^\pi \frac{\cos(2x)}{2}dx</math>.
 +
|}
 +
 
 +
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Step 2: &nbsp;
 
|-
 
|-
|
+
|If we integrate the first integral, we get
 
|-
 
|-
|
+
|<math>\int_0^\pi \sin^2x~dx=\left.\frac{x}{2}\right|_{0}^\pi-\int_0^\pi \frac{\cos(2x)}{2}dx=\frac{\pi}{2}-\int_0^\pi \frac{\cos(2x)}{2}dx</math>.
 
|-
 
|-
 
|
 
|
Line 56: Line 62:
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
!Step 2: &nbsp;
+
!Step 3: &nbsp;
 +
|-
 +
|For the remaining integral, we need to use u substitution. Let <math>u=2x</math>. Then, <math>du=2dx</math>. Also, since this is a definite integral
 
|-
 
|-
|  
+
|and we are using u substiution, we need to change the bounds of integration. We have <math>u_1=2(0)=0</math> and <math>u_2=2(\pi)=2\pi</math>.
 
|-
 
|-
|
+
|So, the integral becomes
 
|-
 
|-
|
+
|<math>\int_0^\pi \sin^2x~dx=\frac{\pi}{2}-\int_0^{2\pi} \frac{\cos(u)}{4}du=\frac{\pi}{2}-\left.\frac{\sin(u)}{4}\right|_0^{2\pi}=\frac{\pi}{2}-\bigg(\frac{\sin(2\pi)}{4}-\frac{\sin(0)}{4}\bigg)=\frac{\pi}{2}</math>
 
|}
 
|}
  
Line 70: Line 78:
 
|'''(a)''' <math>\frac{\tan^2x}{2}+\ln |\cos x|+C</math>
 
|'''(a)''' <math>\frac{\tan^2x}{2}+\ln |\cos x|+C</math>
 
|-
 
|-
|'''(b)'''  
+
|'''(b)''' <math>\frac{\pi}{2}</math>
  
 
[[009B_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']]
 
[[009B_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']]

Revision as of 13:13, 31 January 2016

Evaluate the indefinite and definite integrals.


a)
b)


Foundations:  
Review u substitution
Trig identities

Solution:

(a)

Step 1:  
We start by writing .
Since , we have .
Step 2:  
Now, we need to use u substitution for the first integral. Let . Then, . So, we have
.
Step 3:  
For the remaining integral, we need to use u substitution. First, we write .
Now, we let . Then, . So, we get
.

(b)

Step 1:  
One of the double angle formulas is . Solving for , we get .
Plugging this identity into our integral, we get .
Step 2:  
If we integrate the first integral, we get
.
Step 3:  
For the remaining integral, we need to use u substitution. Let . Then, . Also, since this is a definite integral
and we are using u substiution, we need to change the bounds of integration. We have and .
So, the integral becomes
Final Answer:  
(a)
(b)

Return to Sample Exam