Difference between revisions of "009B Sample Midterm 1, Problem 3"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 38: | Line 38: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
− | | | + | |We proceed using integration by parts. Let <math>u=\ln x</math> and <math>dv=x^3dx</math>. Then, <math>du=\frac{1}{x}dx</math> and <math>v=\frac{x^4}{4}</math>. |
|- | |- | ||
− | | | + | |Therefore, we have |
|- | |- | ||
− | | | + | |<math>\int_{1}^{e} x^3\ln x~dx=\left.\ln x \frac{x^4}{4}\right|_{1}^{e}-\int_1^e \frac{x^3}{4}dx=\left.\ln x \frac{x^4}{4}-\frac{x^4}{16}\right|_{1}^{e}</math> |
|- | |- | ||
| | | | ||
Line 50: | Line 50: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
− | | | + | |Now, we evaluate to get |
|- | |- | ||
− | | | + | |<math>\int_{1}^{e} x^3\ln x~dx=\bigg(\ln e \frac{e^4}{4}-\frac{e^4}{16}\bigg)-\bigg(\ln 1 \frac{1^4}{4}-\frac{1^4}{16}\bigg)=\frac{e^4}{4}-\frac{e^4}{16}+\frac{1}{16}=\frac{3e^4+1}{16}</math> |
|- | |- | ||
| | | | ||
Line 64: | Line 64: | ||
|'''(a)''' <math>x^2e^x-2xe^x+2e^x+C</math> | |'''(a)''' <math>x^2e^x-2xe^x+2e^x+C</math> | ||
|- | |- | ||
− | |'''(b)''' | + | |'''(b)''' <math>\frac{3e^4+1}{16}</math> |
|} | |} | ||
[[009B_Sample_Midterm_1|'''<u>Return to Sample Exam</u>''']] | [[009B_Sample_Midterm_1|'''<u>Return to Sample Exam</u>''']] |
Revision as of 12:26, 31 January 2016
Evaluate the indefinite and definite integrals.
- a)
- b)
Foundations: |
---|
Review integration by parts |
Solution:
(a)
Step 1: |
---|
We proceed using integration by parts. Let and . Then, and . |
Therefore, we have |
Step 2: |
---|
Now, we need to use integration by parts again. Let and . Then, and . |
Therefore, we have |
(b)
Step 1: |
---|
We proceed using integration by parts. Let and . Then, and . |
Therefore, we have |
Step 2: |
---|
Now, we evaluate to get |
Final Answer: |
---|
(a) |
(b) |