Difference between revisions of "009B Sample Midterm 2, Problem 3"

From Grad Wiki
Jump to navigation Jump to search
Line 40: Line 40:
 
!Step 1:    
 
!Step 1:    
 
|-
 
|-
|
+
|We use substitution. Let <math>u=x^4+2x^2+4</math>. Then, <math>du=(4x^3+4x)dx</math> and <math>\frac{du}{4}=(x^3+x)dx</math>. Also, we need to change the bounds of integration.
 
|-
 
|-
|
+
|Plugging in our values into the equation <math>u=x^4+2x^2+4</math>, we get <math>u_1=0^4+2(0)^2+4=4</math> and <math>u_2=2^4+2(2)^2+4=28</math>.
 
|-
 
|-
|
+
|Therefore, the integral becomes <math>\frac{1}{4}\int_4^{28}\sqrt{u}du</math>
 
|-
 
|-
 
|
 
|
Line 52: Line 52:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|
+
|We now have:
 
|-
 
|-
|
+
|<math>\int_0^2 (x^3+x)\sqrt{x^4+2x^2+4}dx=\frac{1}{4}\int_4^{28}\sqrt{u}du=\left.\frac{1}{6}u^{\frac{3}{2}}\right|_4^{28}=\frac{1}{6}(28^{\frac{3}{2}}-4^{\frac{3}{2}})=\frac{1}{6}((\sqrt{28})^3-(\sqrt{4})^3)=\frac{1}{6}((2\sqrt{7})^3-2^3)</math>
 
|-
 
|-
|
+
|So, we have
 
|-
 
|-
|
+
|<math>\int_0^2 (x^3+x)\sqrt{x^4+2x^2+4}dx=\frac{28\sqrt{7}-4}{3}</math>
 
|}
 
|}
  
Line 66: Line 66:
 
|'''(a)''' <math>\frac{211}{8}</math>
 
|'''(a)''' <math>\frac{211}{8}</math>
 
|-
 
|-
|  
+
|'''(b)''' <math>\frac{28\sqrt{7}-4}{3}</math>
 
|}
 
|}
 
[[009B_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']]
 
[[009B_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']]

Revision as of 11:27, 27 January 2016

Evaluate

a)
b)


Foundations:  
Integrating polynomials
U substitution

Solution:

(a)

Step 1:  
We multiply the product inside the integral to get
Step 2:  
We integrate to get
.
We now evaluate to get

(b)

Step 1:  
We use substitution. Let . Then, and . Also, we need to change the bounds of integration.
Plugging in our values into the equation , we get and .
Therefore, the integral becomes
Step 2:  
We now have:
So, we have
Final Answer:  
(a)
(b)

Return to Sample Exam