Difference between revisions of "009B Sample Midterm 2, Problem 5"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 7: | Line 7: | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Foundations: | !Foundations: | ||
+ | |- | ||
+ | |Trig identity | ||
|- | |- | ||
− | |1 | + | |U substitution |
+ | |} | ||
+ | |||
+ | '''Solution:''' | ||
+ | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
+ | !Step 1: | ||
|- | |- | ||
− | |2) | + | |First, we write <math>\int \tan^4(x)dx=\int \tan^2(x) \tan^2(x)dx</math>. |
|- | |- | ||
+ | |Using the trig identity <math>\sec^2(x)=\tan^2(x)+1</math>, we have <math>\tan^2(x)=\sec^2(x)-1</math>. | ||
|- | |- | ||
− | | | + | |Plugging in the last identity into one of the <math>\tan^2(x)</math>, we get |
|- | |- | ||
− | |1) | + | |<math>\int \tan^4(x)dx=\int \tan^2(x) (\sec^2(x)-1)dx=\int \tan^2(x)\sec^2(x)dx-\int \tan^2(x)dx=\int \tan^2(x)\sec^2(x)dx-\int (\sec^2x-1)dx</math> |
|- | |- | ||
− | | | + | |using the identity again on the last equality |
|} | |} | ||
− | |||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
− | !Step | + | !Step 2: |
|- | |- | ||
− | | | + | |So, we have <math>\int \tan^4(x)dx=\int \tan^2(x)\sec^2(x)dx-\int (\sec^2x-1)dx</math>. |
|- | |- | ||
− | | | + | |For the first integral, we need to use substitution. Let <math>u=\tan(x)</math>. Then, <math>du=\sec^2(x)dx</math>. |
|- | |- | ||
− | | | + | |So, we have |
|- | |- | ||
− | | | + | |<math>\int \tan^4(x)dx=\int u^2du-\int (\sec^2(x)-1)dx</math>. |
|} | |} | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
− | !Step | + | !Step 3: |
− | |||
− | |||
|- | |- | ||
− | | | + | |We integrate to get |
|- | |- | ||
− | | | + | | <math>\int \tan^4(x)dx= \frac{u^3}{3}-(\tan(x)-x)+C=\frac{\tan^3(x)}{3}-\tan(x)+x+C</math> |
− | |||
− | |||
|} | |} | ||
Line 48: | Line 51: | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
− | | | + | |<math>\frac{\tan^3(x)}{3}-\tan(x)+x+C</math> |
− | |||
− | |||
|} | |} | ||
[[009B_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']] | [[009B_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']] |
Revision as of 12:33, 27 January 2016
Evaluate the integral:
Foundations: |
---|
Trig identity |
U substitution |
Solution:
Step 1: |
---|
First, we write . |
Using the trig identity , we have . |
Plugging in the last identity into one of the , we get |
using the identity again on the last equality |
Step 2: |
---|
So, we have . |
For the first integral, we need to use substitution. Let . Then, . |
So, we have |
. |
Step 3: |
---|
We integrate to get |
Final Answer: |
---|