Difference between revisions of "009B Sample Midterm 2, Problem 5"

From Grad Wiki
Jump to navigation Jump to search
Line 7: Line 7:
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Foundations:    
 
!Foundations:    
 +
|-
 +
|Trig identity
 
|-
 
|-
|1)
+
|U substitution
 +
|}
 +
 
 +
'''Solution:'''
 +
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Step 1:  
 
|-
 
|-
|2)  
+
|First, we write <math>\int \tan^4(x)dx=\int \tan^2(x) \tan^2(x)dx</math>.
 
|-
 
|-
 +
|Using the trig identity <math>\sec^2(x)=\tan^2(x)+1</math>, we have <math>\tan^2(x)=\sec^2(x)-1</math>.
 
|-
 
|-
|Answers:
+
|Plugging in the last identity into one of the <math>\tan^2(x)</math>, we get
 
|-
 
|-
|1)
+
|<math>\int \tan^4(x)dx=\int \tan^2(x) (\sec^2(x)-1)dx=\int \tan^2(x)\sec^2(x)dx-\int \tan^2(x)dx=\int \tan^2(x)\sec^2(x)dx-\int (\sec^2x-1)dx</math>
 
|-
 
|-
|2)
+
|using the identity again on the last equality
 
|}
 
|}
  
'''Solution:'''
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
!Step 1: &nbsp;  
+
!Step 2: &nbsp;
 
|-
 
|-
|
+
|So, we have <math>\int \tan^4(x)dx=\int \tan^2(x)\sec^2(x)dx-\int (\sec^2x-1)dx</math>.
 
|-
 
|-
|  
+
|For the first integral, we need to use substitution. Let <math>u=\tan(x)</math>. Then, <math>du=\sec^2(x)dx</math>.
 
|-
 
|-
|
+
|So, we have
 
|-
 
|-
|
+
|<math>\int \tan^4(x)dx=\int u^2du-\int (\sec^2(x)-1)dx</math>.
 
|}
 
|}
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
!Step 2: &nbsp;
+
!Step 3: &nbsp;
|-
 
|
 
 
|-
 
|-
|
+
|We integrate to get
 
|-
 
|-
|
+
| <math>\int \tan^4(x)dx= \frac{u^3}{3}-(\tan(x)-x)+C=\frac{\tan^3(x)}{3}-\tan(x)+x+C</math>
|-
 
|
 
 
|}
 
|}
  
Line 48: Line 51:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|
+
|<math>\frac{\tan^3(x)}{3}-\tan(x)+x+C</math>
|-
 
|
 
 
|}
 
|}
 
[[009B_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']]
 
[[009B_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']]

Revision as of 12:33, 27 January 2016

Evaluate the integral:


Foundations:  
Trig identity
U substitution

Solution:

Step 1:  
First, we write .
Using the trig identity , we have .
Plugging in the last identity into one of the , we get
using the identity again on the last equality
Step 2:  
So, we have .
For the first integral, we need to use substitution. Let . Then, .
So, we have
.
Step 3:  
We integrate to get
Final Answer:  

Return to Sample Exam