Difference between revisions of "009B Sample Midterm 2, Problem 3"

From Grad Wiki
Jump to navigation Jump to search
Line 8: Line 8:
 
!Foundations:    
 
!Foundations:    
 
|-
 
|-
|1)
+
|Integrating polynomials
 
|-
 
|-
|2)  
+
|U substitution 
 +
|}
 +
 
 +
'''Solution:'''
 +
 
 +
'''(a)'''
 +
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Step 1:  
 
|-
 
|-
 +
|We multiply the product inside the integral to get
 
|-
 
|-
|Answers:
+
|<math>\int_1^2\bigg(2t+\frac{3}{t^2}\bigg)\bigg(4t^2-\frac{5}{t}\bigg)dt=\int_1^2 \bigg(8t^3-10+12-\frac{15}{t^3}\bigg)dt=\int_1^2 (8t^3+2-15t^{-3})dt</math> 
 +
|}
 +
 
 +
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Step 2: &nbsp;
 +
|-
 +
|We integrate to get
 
|-
 
|-
|1)
+
|<math>\int_1^2\bigg(2t+\frac{3}{t^2}\bigg)\bigg(4t^2-\frac{5}{t}\bigg)dt=\left. 2t^4+2t+\frac{15}{2}t^{-2}\right|_1^2</math>.
 
|-
 
|-
|2)  
+
|We now evaluate to get
 +
|-
 +
|<math>\int_1^2\bigg(2t+\frac{3}{t^2}\bigg)\bigg(4t^2-\frac{5}{t}\bigg)dt=2(2)^4+2(2)+\frac{15}{2(2)^2}-\bigg(2+2+\frac{15}{2}\bigg)=36+\frac{15}{8}-4-\frac{15}{2}=\frac{211}{8}</math>
 
|}
 
|}
  
'''Solution:'''
+
'''(b)'''
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
Line 26: Line 42:
 
|
 
|
 
|-
 
|-
|  
+
|
 
|-
 
|-
 
|
 
|
Line 48: Line 64:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|
+
|'''(a)''' <math>\frac{211}{8}</math>
 
|-
 
|-
 
|  
 
|  
 
|}
 
|}
 
[[009B_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']]
 
[[009B_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']]

Revision as of 11:07, 27 January 2016

Evaluate

a)
b)


Foundations:  
Integrating polynomials
U substitution

Solution:

(a)

Step 1:  
We multiply the product inside the integral to get
Step 2:  
We integrate to get
.
We now evaluate to get

(b)

Step 1:  
Step 2:  
Final Answer:  
(a)

Return to Sample Exam