Difference between revisions of "005 Sample Final A, Question 5"
Jump to navigation
Jump to search
(One intermediate revision by the same user not shown) | |||
Line 14: | Line 14: | ||
<tr> | <tr> | ||
<td align = "center"><math> x:</math></td> | <td align = "center"><math> x:</math></td> | ||
− | <td align = "center"><math> x<-1 </math></td> | + | <td align = "center"><math> x<-2 </math></td> |
+ | <td align = "center"><math> x=-2 </math></td> | ||
+ | <td align = "center"><math> -2<x<-1 </math></td> | ||
<td align = "center"><math> x=-1 </math></td> | <td align = "center"><math> x=-1 </math></td> | ||
− | <td align = "center"><math> -1<x | + | <td align = "center"><math>-1<x</math></td> |
− | |||
− | |||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td align = "center"><math> Sign: </math></td> | <td align = "center"><math> Sign: </math></td> | ||
<td align = "center"><math> (+) </math></td> | <td align = "center"><math> (+) </math></td> | ||
− | <td align = "center"><math> | + | <td align = "center"><math> VA </math></td> |
<td align = "center"><math> (-) </math></td> | <td align = "center"><math> (-) </math></td> | ||
<td align = "center"><math> 0 </math></td> | <td align = "center"><math> 0 </math></td> | ||
Line 31: | Line 31: | ||
|} | |} | ||
+ | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
+ | ! Step 3: | ||
+ | |- | ||
+ | | Now we just write, in interval notation, the intervals over which the denominator is nonnegative. | ||
+ | |- | ||
+ | | The domain of the function is: <math>(-\infty, -2) \cup [-1, \infty)</math> | ||
+ | |} | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" |
Latest revision as of 21:33, 21 May 2015
Question Solve the following inequality. Your answer should be in interval notation.
Step 1: |
---|
We start by subtracting 2 from each side to get |
Step 2: | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Step 3: |
---|
Now we just write, in interval notation, the intervals over which the denominator is nonnegative. |
The domain of the function is: |
Final Answer: |
---|