Difference between revisions of "005 Sample Final A, Question 5"

From Grad Wiki
Jump to navigation Jump to search
 
(3 intermediate revisions by the same user not shown)
Line 6: Line 6:
 
|-
 
|-
 
|We start by subtracting 2 from each side to get <math>\frac{3x + 5}{x + 2} - \frac{2x + 4}{x + 2} = \frac{x + 1}{x + 2} \ge 0</math>
 
|We start by subtracting 2 from each side to get <math>\frac{3x + 5}{x + 2} - \frac{2x + 4}{x + 2} = \frac{x + 1}{x + 2} \ge 0</math>
 +
|}
 +
 +
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
! Step 2:
 +
|-
 +
|<table border="1" cellspacing="0" cellpadding="6" align = "center">
 +
  <tr>
 +
    <td align = "center"><math> x:</math></td>
 +
    <td align = "center"><math> x<-2 </math></td>
 +
    <td align = "center"><math> x=-2 </math></td>
 +
    <td align = "center"><math> -2<x<-1 </math></td>
 +
    <td align = "center"><math> x=-1 </math></td>
 +
    <td align = "center"><math>-1<x</math></td>
 +
  </tr>
 +
  <tr>
 +
    <td align = "center"><math> Sign: </math></td>
 +
    <td align = "center"><math> (+) </math></td>
 +
    <td align = "center"><math> VA </math></td>
 +
    <td align = "center"><math> (-) </math></td>
 +
    <td align = "center"><math> 0 </math></td>
 +
    <td align = "center"><math> (+)</math></td>
 +
  </tr>
 +
</table>
 +
|}
 +
 +
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
! Step 3:
 +
|-
 +
| Now we just write, in interval notation, the intervals over which the denominator is nonnegative.
 +
|-
 +
| The domain of the function is: <math>(-\infty, -2) \cup [-1, \infty)</math>
 +
|}
 +
 +
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
! Final Answer:
 +
|-
 +
|<math>(-\infty, -2)\cup[1, \infty)</math>
 
|}
 
|}

Latest revision as of 21:33, 21 May 2015

Question Solve the following inequality. Your answer should be in interval notation.


Step 1:
We start by subtracting 2 from each side to get
Step 2:
Step 3:
Now we just write, in interval notation, the intervals over which the denominator is nonnegative.
The domain of the function is:
Final Answer: