Difference between revisions of "Exam Templates"

From Grad Wiki
Jump to navigation Jump to search
(Replaced content with "We should put generic templates here, nothing class specific We should probably create a course directory that will house class specific resources")
 
Line 2: Line 2:
  
 
We should probably create a course directory that will house class specific resources
 
We should probably create a course directory that will house class specific resources
 
Presented below is the template for one of the sample questions Parker presented during 302.
 
 
2. Question Statement
 
 
{| class="mw-collapsible mw-collapsed"
 
! Foundations
 
|-
 
|'''The foundations:'''
 
|-
 
| Provide an short explanation about the prerequisite material required to complete this problem.
 
|}
 
 
 
Solution:
 
 
{| class = "mw-collapsible mw-collapsed"
 
! Step 1:
 
|-
 
|Provide as many steps as necessary to complete the problem.
 
|-
 
|The steps should split the solution based on the foundation topics
 
|}
 
 
{| class = "mw-collapsible mw-collapsed"
 
! Step 2:
 
|-
 
|Additional step provided to make the template longer
 
|}
 
 
 
 
'''Example'''
 
 
2. Find the domain of the following function. Your answer should use interval notation.
 
f(x) = <math style="vertical-align:-17%;">\displaystyle{\frac{1}{\sqrt{x^2-x-2}}}</math>
 
 
{| class="mw-collapsible mw-collapsed"
 
! Foundations
 
|-
 
|'''The foundations:'''
 
|-
 
| What is the domain of g(x) = <math style="vertical-align:-17%;">\frac{1}{x}</math>?
 
|-
 
|The function is undefined if the denominator is zero, so x <math>\neq </math>0.
 
|-
 
|Rewriting"x <math>\neq </math>0" in interval notation( <math>-\infty</math>, 0) <math>\cup</math>(0, <math>\infty</math>)
 
|-
 
|What is the domain of h(x) = <math>\sqrt{x}</math>?
 
|-
 
|The function is undefined if wwe have a negative number inside the square root, so x <math>\ge</math> 0
 
|}
 
 
 
Solution:
 
 
{| class = "mw-collapsible mw-collapsed"
 
! Step 1:
 
|-
 
|Factor <math style="vertical-align:-17%;">x^2 - x - 2</math>
 
|-
 
|<math style="vertical-align:-17%;">x^2 - x - 2 = (x + 1) (x - 2)</math>
 
|-
 
| So we can rewrite f(x) as f(x) = <math style="vertical-align:-17%;">\displaystyle{\frac{1}{\sqrt{(x+1)(x-2)}}}</math>
 
|}
 
 
{|class = "mw-collapsible mw-collapsed"
 
! Step 2:
 
|-
 
|When does the denominator of f(x) = 0?
 
|-
 
|<math>sqrt{(x + 1)(x - 2)} = 0</math>
 
|-
 
|(x + 1)(x - 2) = 0
 
|-
 
|(x + 1) = 0 or (x - 2) = 0
 
|-
 
|x = -1 or x = 2
 
|-
 
|So, since the function is undefiend when the denominator is zero, x <math>\neq</math> -1 and x <math>\neq</math> 2
 
|}
 
 
{|class = "mw-collapsible mw-collapsed"
 
! Step 3:
 
|-
 
|What is the domain of h(x) = <math style="vertical-align:-17%;">\sqrt{(x + 1)(x - 2)}</math>
 
|-
 
|critical points: x = -1, x = 2
 
|-
 
|Test points:
 
|-
 
|x = -2: (-2 + 1)(-2 - 2): (-1)(-4) = 4 > 0
 
|-
 
|x = 0: (0 + 1)(0 - 2) = -2 < 0
 
|-
 
|x = 3: (3 + 1)(3 - 2): 4*1 = 4 > 0
 
|-
 
|So the domain of h(x) is (<math>-\infty</math>, -1] <math>\cup</math> [2, <math>\infty</math>)
 
|}
 
 
{|class = "mw-collapsible mw-collapsed"
 
! Step 4:
 
|-
 
|Take the intersection (i.3. common points) of Steps 2 and 3. ( <math>- \infty</math>, -1) <math>\cup</math> (2, <math>\infty</math>)
 
|}
 

Latest revision as of 13:43, 16 March 2015

We should put generic templates here, nothing class specific

We should probably create a course directory that will house class specific resources