Difference between revisions of "005 Sample Final A, Question 5"

From Grad Wiki
Jump to navigation Jump to search
(Created page with "''' Question ''' Solve the following inequality. Your answer should be in interval notation. <math>\frac{3x+5}{x+2}\ge 2</math> {| class="mw-collapsible mw-collapsed" style...")
 
 
(4 intermediate revisions by the same user not shown)
Line 3: Line 3:
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
! Final Answers
+
! Step 1:
 
|-
 
|-
|a) False. Nothing in the definition of a geometric sequence requires the common ratio to be always positive. For example, <math>a_n = (-a)^n</math>
+
|We start by subtracting 2 from each side to get <math>\frac{3x + 5}{x + 2} - \frac{2x + 4}{x + 2} = \frac{x + 1}{x + 2} \ge 0</math>
 +
|}
 +
 
 +
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
! Step 2:
 
|-
 
|-
|b) False. Linear systems only have a solution if the lines intersect. So y = x and y = x + 1 will never intersect because they are parallel.
+
|<table border="1" cellspacing="0" cellpadding="6" align = "center">
 +
  <tr>
 +
    <td align = "center"><math> x:</math></td>
 +
    <td align = "center"><math> x<-2 </math></td>
 +
    <td align = "center"><math> x=-2 </math></td>
 +
    <td align = "center"><math> -2<x<-1 </math></td>
 +
    <td align = "center"><math> x=-1 </math></td>
 +
    <td align = "center"><math>-1<x</math></td>
 +
  </tr>
 +
  <tr>
 +
    <td align = "center"><math> Sign: </math></td>
 +
    <td align = "center"><math> (+) </math></td>
 +
    <td align = "center"><math> VA </math></td>
 +
    <td align = "center"><math> (-) </math></td>
 +
    <td align = "center"><math> 0 </math></td>
 +
    <td align = "center"><math> (+)</math></td>
 +
  </tr>
 +
</table>
 +
|}
 +
 
 +
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
! Step 3:
 
|-
 
|-
|c) False. <math>y = x^2</math> does not have an inverse.
+
| Now we just write, in interval notation, the intervals over which the denominator is nonnegative.
 
|-
 
|-
|d) True. <math>cos^2(x) - cos(x) = 0</math> has multiple solutions.
+
| The domain of the function is: <math>(-\infty, -2) \cup [-1, \infty)</math>
 +
|}
 +
 
 +
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
! Final Answer:
 
|-
 
|-
|e) True.
+
|<math>(-\infty, -2)\cup[1, \infty)</math>
|-
 
|f) False.
 
 
|}
 
|}

Latest revision as of 21:33, 21 May 2015

Question Solve the following inequality. Your answer should be in interval notation.


Step 1:
We start by subtracting 2 from each side to get
Step 2:
Step 3:
Now we just write, in interval notation, the intervals over which the denominator is nonnegative.
The domain of the function is:
Final Answer: