Difference between revisions of "005 Sample Final A, Question 11"

From Grad Wiki
Jump to navigation Jump to search
(Created page with "''' Question ''' Solve the following equation in the interval <math> [0, 2\pi)</math> <br> <center><math> \sin^2(\theta) - \cos^2(\theta)=1+\cos(\theta)</math></center> {|...")
 
 
(3 intermediate revisions by one other user not shown)
Line 1: Line 1:
 
''' Question '''  Solve the following equation in the interval <math> [0, 2\pi)</math> <br>
 
''' Question '''  Solve the following equation in the interval <math> [0, 2\pi)</math> <br>
 
<center><math> \sin^2(\theta) - \cos^2(\theta)=1+\cos(\theta)</math></center>
 
<center><math> \sin^2(\theta) - \cos^2(\theta)=1+\cos(\theta)</math></center>
 +
 +
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Foundations:
 +
|-
 +
|1) Which trigonometric identities are useful in this problem?
 +
|-
 +
|Answer:
 +
|-
 +
|1) <math>\sin^2(\theta)=1-\cos^2(\theta)</math> and
 +
|}
  
  
 +
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
! Step 1:
 +
|-
 +
| We need to get rid of the <math>\sin^2(\theta)</math> term. Since <math>\sin^2(\theta)=1-\cos^2(\theta)</math>, the equation becomes
 +
|-
 +
|<math>(1-\cos^2(\theta))-\cos^2(\theta)=1+\cos(\theta) </math>.
 +
|}
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
! Final Answers
+
! Step 2:
 
|-
 
|-
|a) False. Nothing in the definition of a geometric sequence requires the common ratio to be always positive. For example, <math>a_n = (-a)^n</math>
+
| If we simplify and move all the terms to the right hand side, we have <math>0=2\cos^2(\theta)+\cos(\theta)</math>.
 +
|}
 +
 
 +
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
! Step 3:
 
|-
 
|-
|b) False. Linear systems only have a solution if the lines intersect. So y = x and y = x + 1 will never intersect because they are parallel.
+
| Now, factoring, we have <math>0=\cos(\theta)(2\cos(\theta)+1)</math>. Thus, either <math>\cos(\theta)=0</math> or <math>2\cos(\theta)+1=0</math>.
 +
|}
 +
 
 +
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
! Step 4:
 
|-
 
|-
|c) False. <math>y = x^2</math> does not have an inverse.
+
| The solutions to <math>\cos(\theta)=0</math> in <math> [0, 2\pi)</math> are <math>\theta=\frac{\pi}{2}</math> or <math>\theta=\frac{3\pi}{2}</math>.
 +
|}
 +
 
 +
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
! Step 5:
 
|-
 
|-
|d) True. <math>cos^2(x) - cos(x) = 0</math> has multiple solutions.
+
| The solutions to <math>2\cos(\theta)+1=0</math> are angles that satisfy <math>\cos(\theta)=\frac{-1}{2}</math>. In <math> [0, 2\pi)</math>, the
 
|-
 
|-
|e) True.
+
| solutions are <math>\theta=\frac{2\pi}{3}</math> or <math>\theta=\frac{4\pi}{3}</math>.
 +
|}
 +
 
 +
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
! Final Answer:
 
|-
 
|-
|f) False.  
+
| The solutions are <math>\frac{\pi}{2},\frac{3\pi}{2},\frac{2\pi}{3},\frac{4\pi}{3}</math>.
 
|}
 
|}

Latest revision as of 20:43, 21 May 2015

Question Solve the following equation in the interval

Foundations:
1) Which trigonometric identities are useful in this problem?
Answer:
1) and


Step 1:
We need to get rid of the term. Since , the equation becomes
.
Step 2:
If we simplify and move all the terms to the right hand side, we have .
Step 3:
Now, factoring, we have . Thus, either or .
Step 4:
The solutions to in are or .
Step 5:
The solutions to are angles that satisfy . In , the
solutions are or .
Final Answer:
The solutions are .