Difference between revisions of "005 Sample Final A, Question 12"

From Grad Wiki
Jump to navigation Jump to search
(Created page with "''' Question ''' Given that <math>\sec(\theta) = -2</math> and <math>\tan(\theta) > 0 </math>, find the exact values of the remaining trig functions. {| class="mw-collapsib...")
 
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
 
''' Question '''  Given that <math>\sec(\theta) = -2</math> and <math>\tan(\theta) > 0 </math>, find the exact values of the remaining trig functions.
 
''' Question '''  Given that <math>\sec(\theta) = -2</math> and <math>\tan(\theta) > 0 </math>, find the exact values of the remaining trig functions.
  
 +
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
! Foundations
 +
|-
 +
|1) Which quadrant is <math>\theta</math> in?
 +
|-
 +
|2) Which trig functions are positive in this quadrant?
 +
|-
 +
|3) What are the side lengths of the triangle associated to <math>\theta?</math>
 +
|-
 +
|Answers:
 +
|-
 +
|1) <math>\theta</math> is in the third quadrant. We know it is in the second or third quadrant since <math>\cos</math> is negative. Since \<math>\tan</math> is positive <math>\theta</math> is in the third quadrant.
 +
|-
 +
|2) <math>\tan</math> and <math>\cot</math> are both positive in this quadrant. All other trig functions are negative.
 +
|-
 +
|3) The side lengths are 2, 1, and <math>\sqrt{3}.</math>
 +
|}
 +
 +
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
! Step 1:
 +
|-
 +
| Since <math>\sec(\theta)=-2</math>, we have <math>\cos(\theta)=\frac{1}{\sec(\theta)}=\frac{-1}{2}</math>.
 +
|}
 +
 +
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
! Step 2:
 +
|-
 +
| We look for solutions to <math>\theta</math> on the unit circle. The two angles on the unit circle with <math>\cos(\theta)=\frac{-1}{2}</math> are <math>\theta=\frac{2\pi}{3}</math> and <math>\theta=\frac{4\pi}{3}</math>.
 +
|-
 +
|But, <math>\tan\left(\frac{2\pi}{3}\right)=-\sqrt{3}</math>. Since <math>\tan(\theta)>0</math>. we must have <math>\theta=\frac{4\pi}{3}</math>.
 +
|}
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
! Final Answers
+
! Step 3:
 
|-
 
|-
|a) False. Nothing in the definition of a geometric sequence requires the common ratio to be always positive. For example, <math>a_n = (-a)^n</math>
+
| The remaining values of the trig functions are
 +
|-
 +
|<math>\sin(\theta)=\sin\left(\frac{4\pi}{3}\right)=\frac{-\sqrt{3}}{2}</math>,
 +
|-
 +
|  <math>\tan(\theta)=\tan\left(\frac{4\pi}{3}\right)=\sqrt{3}</math>
 +
|-
 +
|<math>\csc(\theta)=\csc\left(\frac{4\pi}{3}\right)=\frac{-2\sqrt{3}}{3}</math> and
 +
|-
 +
|<math>\cot(\theta)=\cot\left(\frac{4\pi}{3}\right)=\frac{\sqrt{3}}{3}</math>
 +
|}
 +
 
 +
 
 +
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
! Final Answer:
 
|-
 
|-
|b) False. Linear systems only have a solution if the lines intersect. So y = x and y = x + 1 will never intersect because they are parallel.
+
| <math>\sin(\theta)==\frac{-\sqrt{3}}{2}</math>
 
|-
 
|-
|c) False. <math>y = x^2</math> does not have an inverse.
+
|<math>\cos(\theta)=\frac{-1}{2}</math>
 
|-
 
|-
|d) True. <math>cos^2(x) - cos(x) = 0</math> has multiple solutions.
+
|<math>\tan(\theta)=\sqrt{3}</math>
 
|-
 
|-
|e) True.
+
|<math>\csc(\theta)=\frac{-2\sqrt{3}}{3}</math>
 
|-
 
|-
|f) False.
+
|<math>\cot(\theta)=\frac{\sqrt{3}}{3}</math>
 
|}
 
|}

Latest revision as of 20:52, 21 May 2015

Question Given that and , find the exact values of the remaining trig functions.

Foundations
1) Which quadrant is in?
2) Which trig functions are positive in this quadrant?
3) What are the side lengths of the triangle associated to
Answers:
1) is in the third quadrant. We know it is in the second or third quadrant since is negative. Since \ is positive is in the third quadrant.
2) and are both positive in this quadrant. All other trig functions are negative.
3) The side lengths are 2, 1, and
Step 1:
Since , we have .
Step 2:
We look for solutions to on the unit circle. The two angles on the unit circle with are and .
But, . Since . we must have .
Step 3:
The remaining values of the trig functions are
,
and


Final Answer: