Difference between revisions of "005 Sample Final A, Question 13"
Jump to navigation
Jump to search
(Created page with "''' Question ''' Give the exact value of the following if its defined, otherwise, write undefined. <br> <math>(a) \sin^{-1}(2) \qquad \qquad (b) \sin\left(\frac{-32\pi}{3}\ri...") |
|||
(One intermediate revision by one other user not shown) | |||
Line 4: | Line 4: | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
− | ! | + | ! Foundations: |
|- | |- | ||
− | | | + | |1) What is the domain of <math>\sin^{-1}?</math> |
|- | |- | ||
− | | | + | |2) What are the reference angles for <math>\frac{-32\pi}{3}</math> and <math>\frac{-17\pi}{6}</math>? |
|- | |- | ||
− | | | + | |Answers: |
|- | |- | ||
− | | | + | |1) The domain is <math>[-1, 1].</math> |
|- | |- | ||
− | | | + | |2) The reference angle for <math>\frac{-32\pi}{3}</math> is <math>\frac{4\pi}{3}</math>, and the reference angle for <math>\frac{-17\pi}{6}</math> is <math>\frac{7\pi}{6}</math> |
+ | |} | ||
+ | |||
+ | |||
+ | |||
+ | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
+ | ! Step 1: | ||
|- | |- | ||
− | | | + | | For (a), we want an angle <math>\theta</math> such that <math>\sin(\theta)=2</math>. Since <math>-1\leq \sin (\theta)\leq 1</math>, it is impossible |
+ | |- | ||
+ | |for <math>\sin(\theta)=2</math>. So, <math>\sin^{-1}(2)</math> is undefined. | ||
+ | |} | ||
+ | |||
+ | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
+ | ! Step 2: | ||
+ | |- | ||
+ | | For (b), we need to find the reference angle for <math>\frac{-32\pi}{3}</math>. If we add multiples of <math>2\pi</math> to this angle, we get the | ||
+ | |- | ||
+ | |reference angle <math>\frac{4\pi}{3}</math>. So, <math>\sin\left(\frac{-32\pi}{3}\right)=\sin\left(\frac{4\pi}{3}\right)=\frac{-\sqrt{3}}{2}</math>. | ||
+ | |} | ||
+ | |||
+ | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
+ | ! Step 3: | ||
+ | |- | ||
+ | | For (c), we need to find the reference angle for <math>\frac{-17\pi}{6}</math>. If we add multiples of <math>2\pi</math> to this angle, we get the | ||
+ | |- | ||
+ | |reference angle <math>\frac{7\pi}{6}</math>. Since <math>\cos\left(\frac{7\pi}{6}\right)=\frac{-\sqrt{3}}{2}</math>, we have | ||
+ | |- | ||
+ | |<math>\sec\left(\frac{-17\pi}{6}\right)=\sec\left(\frac{7\pi}{6}\right)=\frac{2}{-\sqrt{3}}=\frac{-2\sqrt{3}}{3}</math>. | ||
+ | |} | ||
+ | |||
+ | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
+ | ! Final Answer: | ||
+ | |- | ||
+ | |a) undefined | ||
+ | |- | ||
+ | |b) <math>\frac{-\sqrt{3}}{2}</math> | ||
+ | |- | ||
+ | |c)<math>\frac{-2\sqrt{3}}{3}</math> | ||
|} | |} |
Latest revision as of 20:58, 21 May 2015
Question Give the exact value of the following if its defined, otherwise, write undefined.
Foundations: |
---|
1) What is the domain of |
2) What are the reference angles for and ? |
Answers: |
1) The domain is |
2) The reference angle for is , and the reference angle for is |
Step 1: |
---|
For (a), we want an angle such that . Since , it is impossible |
for . So, is undefined. |
Step 2: |
---|
For (b), we need to find the reference angle for . If we add multiples of to this angle, we get the |
reference angle . So, . |
Step 3: |
---|
For (c), we need to find the reference angle for . If we add multiples of to this angle, we get the |
reference angle . Since , we have |
. |
Final Answer: |
---|
a) undefined |
b) |
c) |