Difference between revisions of "005 Sample Final A, Question 4"

From Grad Wiki
Jump to navigation Jump to search
(Created page with "'''Question''' Find the inverse of the following function <math> f(x) = \frac{3x}{2x-1}</math> {| class="mw-collapsible mw-collapsed" style = "text-align:left;" ! Final Answe...")
 
 
(3 intermediate revisions by the same user not shown)
Line 2: Line 2:
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
! Final Answers
+
! Foundations:
 
|-
 
|-
|a) False. Nothing in the definition of a geometric sequence requires the common ratio to be always positive. For example, <math>a_n = (-a)^n</math>
+
|1) How would you find the inverse for a simpler function like <math>f(x) = 3x + 5</math>?
 
|-
 
|-
|b) False. Linear systems only have a solution if the lines intersect. So y = x and y = x + 1 will never intersect because they are parallel.
+
|Answer:
 
|-
 
|-
|c) False. <math>y = x^2</math> does not have an inverse.
+
|1) you would replace f(x) by y, switch x and y, and finally solve for y.
 +
|}
 +
 
 +
 
 +
 
 +
 
 +
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
! Step 1:
 
|-
 
|-
|d) True. <math>cos^2(x) - cos(x) = 0</math> has multiple solutions.
+
| Switch f(x) for y, to get <math>y = \frac{3x}{2x-1}</math>, then switch y and x to get <math>x = \frac{3y}{2y-1}</math>
 +
|}
 +
 
 +
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
! Step 2:
 
|-
 
|-
|e) True.
+
| Now we have to solve for y:
 +
::<math> \begin{array}{rcl}
 +
x & = & \frac{3y}{2y-1}\\
 +
x(2y - 1) & = & 3y\\
 +
2xy - x & = & 3y\\
 +
2xy - 3y & = & x\\
 +
y(2x - 3) & = & x\\
 +
y & = & \frac{x}{2x - 3}
 +
\end{array}</math>
 +
|}
 +
 
 +
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
! Final Answer:
 
|-
 
|-
|f) False.
+
|<math> y = \frac{x}{2x-3}</math>
 
|}
 
|}

Latest revision as of 20:16, 21 May 2015

Question Find the inverse of the following function

Foundations:
1) How would you find the inverse for a simpler function like ?
Answer:
1) you would replace f(x) by y, switch x and y, and finally solve for y.



Step 1:
Switch f(x) for y, to get , then switch y and x to get
Step 2:
Now we have to solve for y:
Final Answer: