Difference between revisions of "005 Sample Final A, Question 4"
Jump to navigation
Jump to search
(Created page with "'''Question''' Find the inverse of the following function <math> f(x) = \frac{3x}{2x-1}</math> {| class="mw-collapsible mw-collapsed" style = "text-align:left;" ! Final Answe...") |
|||
(3 intermediate revisions by the same user not shown) | |||
Line 2: | Line 2: | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
− | ! | + | ! Foundations: |
|- | |- | ||
− | | | + | |1) How would you find the inverse for a simpler function like <math>f(x) = 3x + 5</math>? |
|- | |- | ||
− | | | + | |Answer: |
|- | |- | ||
− | | | + | |1) you would replace f(x) by y, switch x and y, and finally solve for y. |
+ | |} | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
+ | ! Step 1: | ||
|- | |- | ||
− | | | + | | Switch f(x) for y, to get <math>y = \frac{3x}{2x-1}</math>, then switch y and x to get <math>x = \frac{3y}{2y-1}</math> |
+ | |} | ||
+ | |||
+ | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
+ | ! Step 2: | ||
|- | |- | ||
− | | | + | | Now we have to solve for y: |
+ | ::<math> \begin{array}{rcl} | ||
+ | x & = & \frac{3y}{2y-1}\\ | ||
+ | x(2y - 1) & = & 3y\\ | ||
+ | 2xy - x & = & 3y\\ | ||
+ | 2xy - 3y & = & x\\ | ||
+ | y(2x - 3) & = & x\\ | ||
+ | y & = & \frac{x}{2x - 3} | ||
+ | \end{array}</math> | ||
+ | |} | ||
+ | |||
+ | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
+ | ! Final Answer: | ||
|- | |- | ||
− | | | + | |<math> y = \frac{x}{2x-3}</math> |
|} | |} |
Latest revision as of 20:16, 21 May 2015
Question Find the inverse of the following function
Foundations: |
---|
1) How would you find the inverse for a simpler function like ? |
Answer: |
1) you would replace f(x) by y, switch x and y, and finally solve for y. |
Step 1: |
---|
Switch f(x) for y, to get , then switch y and x to get |
Step 2: |
---|
Now we have to solve for y:
|
Final Answer: |
---|