Difference between revisions of "004 Sample Final A, Problem 1"

From Grad Wiki
Jump to navigation Jump to search
 
Line 4: Line 4:
 
! Foundations
 
! Foundations
 
|-
 
|-
| How would you find the inverse for a simpler function like <math>f(x)=2x+4</math>?
+
| How would you find the inverse for a simpler function like <math>f(x)=2x+4?</math>
 
|-
 
|-
 
|Answer:
 
|Answer:

Latest revision as of 20:08, 28 April 2015

Find for

Foundations
How would you find the inverse for a simpler function like
Answer:
You would replace with . Then, switch and . Finally, we would solve for .


Solution:

Step 1:
We start by replacing with .
This leaves us with
Step 2:
Now, we swap and to get .
Step 3:
Starting with , we multiply both sides by to get
.
Now, we need to get all the terms on one side. So, adding Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -4xy} to both sides we get
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2x+1=3y-4xy} .
Step 4:
Factoring out Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y} , we get Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2x+1=y(3-4x) } . Now, dividing by Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (3-4x)} , we get
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{2x+1}{3-4x}=y} . Replacing Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y} with Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f^{-1}(x)} , we arrive at the final answer
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f^{-1}(x)=\frac{2x+1}{3-4x}}
Final Answer:
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f^{-1}(x)=\frac{2x+1}{3-4x}}

Return to Sample Exam