Difference between revisions of "004 Sample Final A, Problem 10"

From Grad Wiki
Jump to navigation Jump to search
(Created page with "<span class="exam"> Decompose into separate partial fractions.      <math>\frac{6x^2 + 27x + 31}{(x + 3)^2(x-1)}</math>")
 
 
(2 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
<span class="exam"> Decompose into separate partial fractions. &nbsp;&nbsp;&nbsp;&nbsp; <math>\frac{6x^2 + 27x + 31}{(x + 3)^2(x-1)}</math>
 
<span class="exam"> Decompose into separate partial fractions. &nbsp;&nbsp;&nbsp;&nbsp; <math>\frac{6x^2 + 27x + 31}{(x + 3)^2(x-1)}</math>
 +
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
! Foundations
 +
|-
 +
|1) What is the form of the partial fraction decomposition of <math>\frac{3x-37}{(x+1)(x-4)}</math>?
 +
|-
 +
|2) What is the form of the partial fraction decomposition of <math>\frac{4x^2}{(x-1){(x-2)}^2}</math>?
 +
|-
 +
|Answer:
 +
|-
 +
|1) <math>\frac{A}{x+1}+\frac{B}{x-4}</math>
 +
|-
 +
|2)<math>\frac{A}{x-1}+\frac{B}{x-2}+\frac{C}{{(x-2)}^2}</math>
 +
|}
 +
 +
 +
Solution:
 +
 +
{| class = "mw-collapsible mw-collapsed" style = "text-align:left;"
 +
! Step 1:
 +
|-
 +
|We set <math>\frac{6x^2 + 27x + 31}{(x + 3)^2(x-1)}=\frac{A}{x-1}+\frac{B}{x+3}+\frac{C}{{(x+3)}^2}</math>.
 +
|}
 +
 +
{|class = "mw-collapsible mw-collapsed" style = "text-align:left;"
 +
! Step 2:
 +
|-
 +
|Multiplying both sides of the equation by <math>(x + 3)^2(x-1)</math>, we get
 +
|-
 +
|<math>6x^2+27x+31=A(x+3)^2+B(x+3)(x-1)+C(x-1)</math>.
 +
|}
 +
 +
{|class = "mw-collapsible mw-collapsed" style = "text-align:left;"
 +
! Step 3:
 +
|-
 +
|If we set <math>x=1</math> in the above equation, we get <math>16A=64</math> and <math>A=4</math>.
 +
|-
 +
|If we set <math>x=-3</math> in the above equation, we get <math>-4C=4</math> and <math>C=-1</math>. 
 +
|}
 +
 +
{|class = "mw-collapsible mw-collapsed" style = "text-align:left;"
 +
! Step 4:
 +
|-
 +
|In the equation <math>6x^2+27x+31=A(x+3)^2+B(x+3)(x-1)+C(x-1)</math>, we compare the constant terms of both sides. We must have
 +
|-
 +
|<math>9A-3B-C=31</math>. Substituting <math>A=4</math> and <math>C=-1</math>, we get <math>B=2</math>.
 +
|-
 +
|Thus, the partial fraction decomposition is <math>\frac{4}{x-1}+\frac{2}{x+3}+\frac{-1}{{(x+3)}^2}</math>
 +
|}
 +
 +
{|class = "mw-collapsible mw-collapsed" style = "text-align:left;"
 +
! Final Answer:
 +
|-
 +
|<math>\frac{4}{x-1}+\frac{2}{x+3}+\frac{-1}{{(x+3)}^2}</math>
 +
|}
 +
 +
[[004 Sample Final A|<u>'''Return to Sample Exam</u>''']]

Latest revision as of 16:43, 4 May 2015

Decompose into separate partial fractions.     

Foundations
1) What is the form of the partial fraction decomposition of ?
2) What is the form of the partial fraction decomposition of ?
Answer:
1)
2)


Solution:

Step 1:
We set .
Step 2:
Multiplying both sides of the equation by , we get
.
Step 3:
If we set in the above equation, we get and .
If we set in the above equation, we get and .
Step 4:
In the equation , we compare the constant terms of both sides. We must have
. Substituting and , we get .
Thus, the partial fraction decomposition is
Final Answer:

Return to Sample Exam