Difference between revisions of "007B Sample Final 2"

From Grad Wiki
Jump to navigation Jump to search
 
(3 intermediate revisions by the same user not shown)
Line 28: Line 28:
  
 
== [[007B_Sample Final 2,_Problem_4|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 4&nbsp;</span>]] ==
 
== [[007B_Sample Final 2,_Problem_4|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 4&nbsp;</span>]] ==
<span class="exam"> A city bordered on one side by a lake can be approximated by a semicircle of radius 7 miles, whose city center is on the shoreline. As we move away from the center along a radius the population density of the city can be approximated by:
+
<span class="exam"> Evaluate &nbsp;<math style="vertical-align: -13px">\int_0^5 |x-1|~dx.</math>&nbsp; (Suggestion: Sketch the graph.)
 
 
::<math>\rho(x)=25000e^{-0.15x}</math>
 
 
 
<span class="exam">people per square mile. What is the population of the city?
 
  
 
== [[007B_Sample Final 2,_Problem_5|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 5&nbsp;</span>]] ==
 
== [[007B_Sample Final 2,_Problem_5|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 5&nbsp;</span>]] ==
<span class="exam">(a) Find the area of the surface obtained by rotating the arc of the curve
 
 
::<math>y^3=x</math>
 
 
<span class="exam">between &nbsp;<math style="vertical-align: -5px">(0,0)</math>&nbsp; and &nbsp;<math style="vertical-align: -5px">(1,1)</math>&nbsp; about the &nbsp;<math style="vertical-align: -4px">y</math>-axis.
 
 
<span class="exam">(b) Find the length of the arc
 
 
::<math>y=1+9x^{\frac{3}{2}}</math>
 
 
<span class="exam">between the points &nbsp;<math style="vertical-align: -5px">(1,10)</math>&nbsp; and &nbsp;<math style="vertical-align: -5px">(4,73).</math>
 
 
== [[007B_Sample Final 2,_Problem_6|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 6&nbsp;</span>]] ==
 
 
<span class="exam"> Evaluate the following integrals:
 
<span class="exam"> Evaluate the following integrals:
  
Line 56: Line 39:
 
<span class="exam">(c) &nbsp;<math>\int_0^1 \frac{x-3}{x^2+6x+5}~dx</math>
 
<span class="exam">(c) &nbsp;<math>\int_0^1 \frac{x-3}{x^2+6x+5}~dx</math>
  
== [[007B_Sample Final 2,_Problem_7|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 7&nbsp;</span>]] ==
+
== [[007B_Sample Final 2,_Problem_6|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 6&nbsp;</span>]] ==
 
 
 
<span class="exam">Evaluate the following integrals or show that they are divergent:
 
<span class="exam">Evaluate the following integrals or show that they are divergent:
  
Line 63: Line 45:
  
 
<span class="exam">(b) &nbsp;<math> \int_0^1 \frac{3\ln x}{\sqrt{x}}~dx</math>
 
<span class="exam">(b) &nbsp;<math> \int_0^1 \frac{3\ln x}{\sqrt{x}}~dx</math>
 +
 +
== [[007B_Sample Final 2,_Problem_7|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 7&nbsp;</span>]] ==
 +
 +
<span class="exam">Suppose the size of a population evolves according to the logistic equation:
 +
 +
::<math>\frac{dN}{dt}=1.5N\bigg(1-\frac{N}{100}\bigg).</math>
 +
 +
<span class="exam">(a) Find all equilibria, and by using the graphical approach, discuss the stability of the equilibria.
 +
 +
<span class="exam">(b) Find the eigenvalues associated with the equilibria, and use the eigenvalues to determine the stability of the equilibria.

Latest revision as of 00:04, 3 December 2017

This is a sample, and is meant to represent the material usually covered in Math 7B for the final. An actual test may or may not be similar.

Click on the  boxed problem numbers  to go to a solution.

 Problem 1 

(a) State both parts of the Fundamental Theorem of Calculus.

(b) Evaluate the integral

(c) Compute

 Problem 2 

Consider the area bounded by the following two functions:

(a) Sketch the graphs and find their points of intersection.

(b) Find the area bounded by the two functions.

 Problem 3 

Find the volume of the solid obtained by rotating the region bounded by the curves    and    about the line  

 Problem 4 

Evaluate    (Suggestion: Sketch the graph.)

 Problem 5 

Evaluate the following integrals:

(a)  

(b)  

(c)  

 Problem 6 

Evaluate the following integrals or show that they are divergent:

(a)  

(b)  

 Problem 7 

Suppose the size of a population evolves according to the logistic equation:

(a) Find all equilibria, and by using the graphical approach, discuss the stability of the equilibria.

(b) Find the eigenvalues associated with the equilibria, and use the eigenvalues to determine the stability of the equilibria.